Biblio
Botnet has been evolving over time since its birth. Nowadays, P2P (Peer-to-Peer) botnet has become a main threat to cyberspace security, owing to its strong concealment and easy expansibility. In order to effectively detect P2P botnet, researchers often focus on the analysis of network traffic. For the sake of enriching P2P botnet detection methods, the author puts forward a new sight of applying distributed threat intelligence sharing system to P2P botnet detection. This system aims to fight against distributed botnet by using distributed methods itself, and then to detect botnet in real time. To fulfill the goal of botnet detection, there are 3 important parts: the threat intelligence sharing and evaluating system, the BAV quantitative TI model, and the AHP and HMM based analysis algorithm. Theoretically, this method should work on different types of distributed cyber threat besides P2P botnet.
Traditional firewalls, Intrusion Detection Systems(IDS) and network analytics tools extensively use the `flow' connection concept, consisting of five `tuples' of source and destination IP, ports and protocol type, for classification and management of network activities. By analysing flows, information can be obtained from TCP/IP fields and packet content to give an understanding of what is being transferred within a single connection. As networks have evolved to incorporate more connections and greater bandwidth, particularly from ``always on'' IoT devices and video and data streaming, so too have malicious network threats, whose communication methods have increased in sophistication. As a result, the concept of the 5 tuple flow in isolation is unable to detect such threats and malicious behaviours. This is due to factors such as the length of time and data required to understand the network traffic behaviour, which cannot be accomplished by observing a single connection. To alleviate this issue, this paper proposes the use of additional, two tuple and single tuple flow types to associate multiple 5 tuple communications, with generated metadata used to profile individual connnection behaviour. This proposed approach enables advanced linking of different connections and behaviours, developing a clearer picture as to what network activities have been taking place over a prolonged period of time. To demonstrate the capability of this approach, an expert system rule set has been developed to detect the presence of a multi-peered ZeuS botnet, which communicates by making multiple connections with multiple hosts, thus undetectable to standard IDS systems observing 5 tuple flow types in isolation. Finally, as the solution is rule based, this implementation operates in realtime and does not require post-processing and analytics of other research solutions. This paper aims to demonstrate possible applications for next generation firewalls and methods to acquire additional information from network traffic.
As the Internet technology develops rapidly, attacks against Tor networks becomes more and more frequent. So, it's more and more difficult for Tor network to meet people's demand to protect their private information. A method to improve the anonymity of Tor seems urgent. In this paper, we mainly talk about the principle of Tor, which is the largest anonymous communication system in the world, analyze the reason for its limited efficiency, and discuss the vulnerability of link fingerprint and node selection. After that, a node recognition model based on SVM is established, which verifies that the traffic characteristics expose the node attributes, thus revealing the link and destroying the anonymity. Based on what is done above, some measures are put forward to improve Tor protocol to make it more anonymous.
The paper offers an approach for implementation of intelligent agents intended for network traffic and security risk analysis in cyber-physical systems. The agents are based on the algorithm of pseudo-gradient adaptive anomaly detection and fuzzy logical inference. The suggested algorithm operates in real time. The fuzzy logical inference is used for regulation of algorithm parameters. The variants of the implementation are proposed. The experimental assessment of the approach confirms its high speed and adequate accuracy for network traffic analysis.
The ability to identify mobile apps in network traffic has significant implications in many domains, including traffic management, malware detection, and maintaining user privacy. App identification methods in the literature typically use deep packet inspection (DPI) and analyze HTTP headers to extract app fingerprints. However, these methods cannot be used if HTTP traffic is encrypted. We investigate whether Android apps can be identified from their launch-time network traffic using only TCP/IP headers. We first capture network traffic of 86,109 app launches by repeatedly running 1,595 apps on 4 distinct Android devices. We then use supervised learning methods used previously in the web page identification literature, to identify the apps that generated the traffic. We find that: (i) popular Android apps can be identified with 88% accuracy, by using the packet sizes of the first 64 packets they generate, when the learning methods are trained and tested on the data collected from same device; (ii) when the data from an unseen device (but similar operating system/vendor) is used for testing, the apps can be identified with 67% accuracy; (iii) the app identification accuracy does not drop significantly even if the training data are stale by several days, and (iv) the accuracy does drop quite significantly if the operating system/vendor is very different. We discuss the implications of our findings as well as open issues.
Most network traffic analysis applications are designed to discover malicious activity by only relying on high-level flow-based message properties. However, to detect security breaches that are specifically designed to target one network (e.g., Advanced Persistent Threats), deep packet inspection and anomaly detection are indispensible. In this paper, we focus on how we can support experts in discovering whether anomalies at message level imply a security risk at network level. In SNAPS (Semantic Network traffic Analysis through Projection and Selection), we provide a bottom-up pixel-oriented approach for network traffic analysis where the expert starts with low-level anomalies and iteratively gains insight in higher level events through the creation of multiple selections of interest in parallel. The tight integration between visualization and machine learning enables the expert to iteratively refine anomaly scores, making the approach suitable for both post-traffic analysis and online monitoring tasks. To illustrate the effectiveness of this approach, we present example explorations on two real-world data sets for the detection and understanding of potential Advanced Persistent Threats in progress.