Biblio
The mass integration and deployment of intelligent technologies within critical commercial, industrial and public environments have a significant impact on business operations and society as a whole. Though integration of these critical intelligent technologies pose serious embedded security challenges for technology manufacturers which are required to be systematically approached, in-line with international security regulations.This paper establish security foundation for such intelligent technologies by deriving embedded security requirements to realise the core security functions laid out by international security authorities, and proposing microarchitectural characteristics to establish cyber resilience in embedded systems. To bridge the research gap between embedded and operational security domains, a detailed review of existing embedded security methods, microarchitectures and design practises is presented. The existing embedded security methods have been found ad-hoc, passive and strongly rely on building and maintaining trust. To the best of our knowledge to date, no existing embedded security microarchitecture or defence mechanism provides continuity of data stream or security once trust has broken. This functionality is critical for embedded technologies deployed in critical infrastructure to enhance and maintain security, and to gain evidence of the security breach to effectively evaluate, improve and deploy active response and mitigation strategies. To this end, the paper proposes three microarchitectural characteristics that shall be designed and integrated into embedded architectures to establish, maintain and improve cyber resilience in embedded systems for next-generation critical infrastructure.
Modern Browsers have become sophisticated applications, providing a portal to the web. Browsers host a complex mix of interpreters such as HTML and JavaScript, allowing not only useful functionality but also malicious activities, known as browser-hijacking. These attacks can be particularly difficult to detect, as they usually operate within the scope of normal browser behaviour. CryptoJacking is a form of browser-hijacking that has emerged as a result of the increased popularity and profitability of cryptocurrencies, and the introduction of new cryptocurrencies that promote CPU-based mining. This paper proposes MANiC (Multi-step AssessmeNt for Crypto-miners), a system to detect CryptoJacking websites. It uses regular expressions that are compiled in accordance with the API structure of different miner families. This allows the detection of crypto-mining scripts and the extraction of parameters that could be used to detect suspicious behaviour associated with CryptoJacking. When MANiC was used to analyse the Alexa top 1m websites, it detected 887 malicious URLs containing miners from 11 different families and demonstrated favourable results when compared to related CryptoJacking research. We demonstrate that MANiC can be used to provide insights into this new threat, to identify new potential features of interest and to establish a ground-truth dataset, assisting future research.
Traditional firewalls, Intrusion Detection Systems(IDS) and network analytics tools extensively use the `flow' connection concept, consisting of five `tuples' of source and destination IP, ports and protocol type, for classification and management of network activities. By analysing flows, information can be obtained from TCP/IP fields and packet content to give an understanding of what is being transferred within a single connection. As networks have evolved to incorporate more connections and greater bandwidth, particularly from ``always on'' IoT devices and video and data streaming, so too have malicious network threats, whose communication methods have increased in sophistication. As a result, the concept of the 5 tuple flow in isolation is unable to detect such threats and malicious behaviours. This is due to factors such as the length of time and data required to understand the network traffic behaviour, which cannot be accomplished by observing a single connection. To alleviate this issue, this paper proposes the use of additional, two tuple and single tuple flow types to associate multiple 5 tuple communications, with generated metadata used to profile individual connnection behaviour. This proposed approach enables advanced linking of different connections and behaviours, developing a clearer picture as to what network activities have been taking place over a prolonged period of time. To demonstrate the capability of this approach, an expert system rule set has been developed to detect the presence of a multi-peered ZeuS botnet, which communicates by making multiple connections with multiple hosts, thus undetectable to standard IDS systems observing 5 tuple flow types in isolation. Finally, as the solution is rule based, this implementation operates in realtime and does not require post-processing and analytics of other research solutions. This paper aims to demonstrate possible applications for next generation firewalls and methods to acquire additional information from network traffic.