Visible to the public Biblio

Filters: Author is Sezer, Sakir  [Clear All Filters]
2022-08-12
Khan, Rafiullah, McLaughlin, Kieran, Kang, BooJoong, Laverty, David, Sezer, Sakir.  2021.  A Novel Edge Security Gateway for End-to-End Protection in Industrial Internet of Things. 2021 IEEE Power & Energy Society General Meeting (PESGM). :1—5.
Many critical industrial control systems integrate a mixture of state-of-the-art and legacy equipment. Legacy installations lack advanced, and often even basic security features, risking entire system security. Existing research primarily focuses on the development of secure protocols for emerging devices or protocol translation proxies for legacy equipment. However, a robust security framework not only needs encryption but also mechanisms to prevent reconnaissance and unauthorized access to industrial devices. This paper proposes a novel Edge Security Gateway (ESG) that provides both, communication and endpoint security. The ESG is based on double ratchet algorithm and encrypts every message with a different key. It manages the ongoing renewal of short-lived session keys and provides localized firewall protection to individual devices. The ESG is easily customizable for a wide range of industrial application. As a use case, this paper presents the design and validation for synchrophasor technology in smart grid. The ESG effectiveness is practically validated in detecting reconnaissance, manipulation, replay, and command injection attacks due to its perfect forward and backward secrecy properties.
2022-01-25
Hughes, Kieran, McLaughlin, Kieran, Sezer, Sakir.  2021.  Towards Intrusion Response Intel. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :337—342.
Threat Intelligence has been a key part of the success of Intrusion Detection, with several trusted sources leading to wide adoption and greater understanding of new and trending threats to computer networks. Identifying potential threats and live attacks on networks is only half the battle, knowing how to correctly respond to these threats and attacks requires in-depth and domain specific knowledge, which may be unique to subject experts and software vendors. Network Incident Responders and Intrusion Response Systems can benefit from a similar approach to Threat Intel, with a focus on potential Response actions. A qualitative comparison of current Threat Intel Sources and prominent Intrusion Response Systems is carried out to aid in the identification of key requirements to be met to enable the adoption of Response Intel. Building on these requirements, a template for Response Intel is proposed which incorporates standardised models developed by MITRE. Similarly, to facilitate the automated use of Response Intel, a structure for automated Response Actions is proposed.
2021-06-24
Hughes, Kieran, McLaughlin, Kieran, Sezer, Sakir.  2020.  Dynamic Countermeasure Knowledge for Intrusion Response Systems. 2020 31st Irish Signals and Systems Conference (ISSC). :1–6.
Significant advancements in Intrusion Detection Systems has led to improved alerts. However, Intrusion Response Systems which aim to automatically respond to these alerts, is a research area which is not yet advanced enough to benefit from full automation. In Security Operations Centres, analysts can implement countermeasures using knowledge and past experience to adapt to new attacks. Attempts at automated Intrusion Response Systems fall short when a new attack occurs to which the system has no specific knowledge or effective countermeasure to apply, even leading to overkill countermeasures such as restarting services and blocking ports or IPs. In this paper, a countermeasure standard is proposed which enables countermeasure intelligence sharing, automated countermeasure adoption and execution by an Intrusion Response System. An attack scenario is created on an emulated network using the Common Open Research Emulator, where an insider attack attempts to exploit a buffer overflow on an Exim mail server. Experiments demonstrate that an Intrusion Response System with dynamic countermeasure knowledge can stop attacks that would otherwise succeed with a static predefined countermeasure approach.
2020-10-05
Siddiqui, Fahad, Hagan, Matthew, Sezer, Sakir.  2019.  Establishing Cyber Resilience in Embedded Systems for Securing Next-Generation Critical Infrastructure. 2019 32nd IEEE International System-on-Chip Conference (SOCC). :218–223.

The mass integration and deployment of intelligent technologies within critical commercial, industrial and public environments have a significant impact on business operations and society as a whole. Though integration of these critical intelligent technologies pose serious embedded security challenges for technology manufacturers which are required to be systematically approached, in-line with international security regulations.This paper establish security foundation for such intelligent technologies by deriving embedded security requirements to realise the core security functions laid out by international security authorities, and proposing microarchitectural characteristics to establish cyber resilience in embedded systems. To bridge the research gap between embedded and operational security domains, a detailed review of existing embedded security methods, microarchitectures and design practises is presented. The existing embedded security methods have been found ad-hoc, passive and strongly rely on building and maintaining trust. To the best of our knowledge to date, no existing embedded security microarchitecture or defence mechanism provides continuity of data stream or security once trust has broken. This functionality is critical for embedded technologies deployed in critical infrastructure to enhance and maintain security, and to gain evidence of the security breach to effectively evaluate, improve and deploy active response and mitigation strategies. To this end, the paper proposes three microarchitectural characteristics that shall be designed and integrated into embedded architectures to establish, maintain and improve cyber resilience in embedded systems for next-generation critical infrastructure.

2020-04-17
Burgess, Jonah, Carlin, Domhnall, O'Kane, Philip, Sezer, Sakir.  2019.  MANiC: Multi-step Assessment for Crypto-miners. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1—8.

Modern Browsers have become sophisticated applications, providing a portal to the web. Browsers host a complex mix of interpreters such as HTML and JavaScript, allowing not only useful functionality but also malicious activities, known as browser-hijacking. These attacks can be particularly difficult to detect, as they usually operate within the scope of normal browser behaviour. CryptoJacking is a form of browser-hijacking that has emerged as a result of the increased popularity and profitability of cryptocurrencies, and the introduction of new cryptocurrencies that promote CPU-based mining. This paper proposes MANiC (Multi-step AssessmeNt for Crypto-miners), a system to detect CryptoJacking websites. It uses regular expressions that are compiled in accordance with the API structure of different miner families. This allows the detection of crypto-mining scripts and the extraction of parameters that could be used to detect suspicious behaviour associated with CryptoJacking. When MANiC was used to analyse the Alexa top 1m websites, it detected 887 malicious URLs containing miners from 11 different families and demonstrated favourable results when compared to related CryptoJacking research. We demonstrate that MANiC can be used to provide insights into this new threat, to identify new potential features of interest and to establish a ground-truth dataset, assisting future research.

2020-01-02
Hagan, Matthew, Kang, BooJoong, McLaughlin, Kieran, Sezer, Sakir.  2018.  Peer Based Tracking Using Multi-Tuple Indexing for Network Traffic Analysis and Malware Detection. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1–5.

Traditional firewalls, Intrusion Detection Systems(IDS) and network analytics tools extensively use the `flow' connection concept, consisting of five `tuples' of source and destination IP, ports and protocol type, for classification and management of network activities. By analysing flows, information can be obtained from TCP/IP fields and packet content to give an understanding of what is being transferred within a single connection. As networks have evolved to incorporate more connections and greater bandwidth, particularly from ``always on'' IoT devices and video and data streaming, so too have malicious network threats, whose communication methods have increased in sophistication. As a result, the concept of the 5 tuple flow in isolation is unable to detect such threats and malicious behaviours. This is due to factors such as the length of time and data required to understand the network traffic behaviour, which cannot be accomplished by observing a single connection. To alleviate this issue, this paper proposes the use of additional, two tuple and single tuple flow types to associate multiple 5 tuple communications, with generated metadata used to profile individual connnection behaviour. This proposed approach enables advanced linking of different connections and behaviours, developing a clearer picture as to what network activities have been taking place over a prolonged period of time. To demonstrate the capability of this approach, an expert system rule set has been developed to detect the presence of a multi-peered ZeuS botnet, which communicates by making multiple connections with multiple hosts, thus undetectable to standard IDS systems observing 5 tuple flow types in isolation. Finally, as the solution is rule based, this implementation operates in realtime and does not require post-processing and analytics of other research solutions. This paper aims to demonstrate possible applications for next generation firewalls and methods to acquire additional information from network traffic.

2019-12-02
Khan, Rafiullah, McLaughlin, Kieran, Laverty, John Hastings David, David, Hastings, Sezer, Sakir.  2018.  Demonstrating Cyber-Physical Attacks and Defense for Synchrophasor Technology in Smart Grid. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1–10.
Synchrophasor technology is used for real-time control and monitoring in smart grid. Previous works in literature identified critical vulnerabilities in IEEE C37.118.2 synchrophasor communication standard. To protect synchrophasor-based systems, stealthy cyber-attacks and effective defense mechanisms still need to be investigated.This paper investigates how an attacker can develop a custom tool to execute stealthy man-in-the-middle attacks against synchrophasor devices. In particular, four different types of attack capabilities have been demonstrated in a real synchrophasor-based synchronous islanding testbed in laboratory: (i) command injection attack, (ii) packet drop attack, (iii) replay attack and (iv) stealthy data manipulation attack. With deep technical understanding of the attack capabilities and potential physical impacts, this paper also develops and tests a distributed Intrusion Detection System (IDS) following NIST recommendations. The functionalities of the proposed IDS have been validated in the testbed for detecting aforementioned cyber-attacks. The paper identified that a distributed IDS with decentralized decision making capability and the ability to learn system behavior could effectively detect stealthy malicious activities and improve synchrophasor network security.
2019-10-22
Hagan, Matthew, Siddiqui, Fahad, Sezer, Sakir.  2018.  Policy-Based Security Modelling and Enforcement Approach for Emerging Embedded Architectures. 2018 31st IEEE International System-on-Chip Conference (SOCC). :84–89.
Complex embedded systems often contain hard to find vulnerabilities which, when exploited, have potential to cause severe damage to the operating environment and the user. Given that threats and vulnerabilities can exist within any layer of the complex eco-system, OEMs face a major challenge to ensure security throughout the device life-cycle To lower the potential risk and damage that vulnerabilities may cause, OEMs typically perform application threat analysis and security modelling. This process typically provides a high level guideline to solving security problems which can then be implemented during design and development. However, this concept presents issues where new threats or unknown vulnerability has been discovered. To address this issue, we propose a policy-based security modelling approach, which utilises a configurable policy engine to apply new policies that counter serious threats. By utilising this approach, the traditional security modelling approaches can be enhanced and the consequences of a new threat greatly reduced. We present a realistic use case of connected car, applying several attack scenarios. By utilising STRIDE threat modelling and DREAD risk assessment model, adequate policies are derived to protect the car assets. This approach poses advantages over the standard approach, allowing a policy update to counter a new threat, which may have otherwise required a product redesign to alleviate the issue under the traditional approach.