Visible to the public Biblio

Filters: Keyword is Portable document format  [Clear All Filters]
2023-09-20
Khalil, Md Yusuf, Vivek, Anand, Kumar, Paul, Antarlina, Grover, Rahul.  2022.  PDF Malware Analysis. 2022 7th International Conference on Computing, Communication and Security (ICCCS). :1—4.
This document addresses the issue of the actual security level of PDF documents. Two types of detection approaches are utilized to detect dangerous elements within malware: static analysis and dynamic analysis. Analyzing malware binaries to identify dangerous strings, as well as reverse-engineering is included in static analysis for t1he malware to disassemble it. On the other hand, dynamic analysis monitors malware activities by running them in a safe environment, such as a virtual machine. Each method has its own set of strengths and weaknesses, and it is usually best to employ both methods while analyzing malware. Malware detection could be simplified without sacrificing accuracy by reducing the number of malicious traits. This may allow the researcher to devote more time to analysis. Our worry is that there is no obvious need to identify malware with numerous functionalities when it isn't necessary. We will solve this problem by developing a system that will identify if the given file is infected with malware or not.
2023-06-02
Sharad Sonawane, Hritesh, Deshmukh, Sanika, Joy, Vinay, Hadsul, Dhanashree.  2022.  Torsion: Web Reconnaissance using Open Source Intelligence. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1—4.

Internet technology has made surveillance widespread and access to resources at greater ease than ever before. This implied boon has countless advantages. It however makes protecting privacy more challenging for the greater masses, and for the few hacktivists, supplies anonymity. The ever-increasing frequency and scale of cyber-attacks has not only crippled private organizations but has also left Law Enforcement Agencies(LEA's) in a fix: as data depicts a surge in cases relating to cyber-bullying, ransomware attacks; and the force not having adequate manpower to tackle such cases on a more microscopic level. The need is for a tool, an automated assistant which will help the security officers cut down precious time needed in the very first phase of information gathering: reconnaissance. Confronting the surface web along with the deep and dark web is not only a tedious job but which requires documenting the digital footprint of the perpetrator and identifying any Indicators of Compromise(IOC's). TORSION which automates web reconnaissance using the Open Source Intelligence paradigm, extracts the metadata from popular indexed social sites and un-indexed dark web onion sites, provided it has some relating Intel on the target. TORSION's workflow allows account matching from various top indexed sites, generating a dossier on the target, and exporting the collected metadata to a PDF file which can later be referenced.

2022-03-14
Adarsh, S, Jain, Kurunandan.  2021.  Capturing Attacker Identity with Biteback Honeypot. 2021 International Conference on System, Computation, Automation and Networking (ICSCAN). :1–7.
Cyber attacks are increasing at a rapid pace targeting financial institutions and the corporate sector, especially during pandemics such as COVID-19. Honeypots are implemented in data centers and servers, to capture these types of attacks and malicious activities. In this work, an experimental prototype is created simulating the attacker and victim environments and the results are consolidated. Attacker information is extracted using the Meterpreter framework and uses reverse TCP for capturing the data. Normal honeypots does not capture an attacker and his identity. Information such as user ID, Internet Protocol(IP) address, proxy servers, incoming and outgoing traffic, webcam snapshot, Media Access Control(MAC) address, operating system architecture, and router information of the attacker such as ARP cache can be extracted by this honeypot with "biteback" feature.
2022-02-04
Sharif, Amer, Ginting, Dewi S., Dias, Arya D..  2021.  Securing the Integrity of PDF Files using RSA Digital Signature and SHA-3 Hash Function. 2021 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA). :154–159.
Signatures are used on documents as written proof that the document was verified by the person indicated. Signature also indicated that the document originated from the signer if the document is transferred to another party. A document maybe in physical print form but may also be a digital print. A digital print requires additional security since a digital document may easily be altered by anyone although the said document is signed using a photographed or scanned signature. One of the means of security is by using the RSA Digital Signature method which is a combination of the RSA algorithm with Digital Signature. RSA algorithm is one of the public key cryptography algorithms, while Digital Signature is a security scheme which may guarantee the authenticity, non-repudiation, and integrity of a file by means of a hash function. This research implemented a web-based combination of RSA Digital Signature with SHA-3 hash function to secure the integrity of PDF files using PHP programming language. The result is a web-based system which could guarantee the authenticity, non repudiation and integrity of PDF files. Testing were carried out on six different sizes of PDF files ranging from 6 KB, up to 23285 KB on three different web browsers: Google Chrome, Microsoft Edge, and Mozilla Firefox. Average processing times of signing and verifying on each browsers were 1.3309 seconds, 1.2565 seconds, and 1.2667 seconds.
2020-10-16
Gaio Rito, Cátia Sofia, Beatriz Piedade, Maria, Eugénio Lucas, Eugénio.  2019.  E-Government - Qualified Digital Signature Case Study. 2019 14th Iberian Conference on Information Systems and Technologies (CISTI). :1—6.

This paper presents a case study on the use and implementation of the Qualified Digital Signature. Problematics such as the degree of use, security and authenticity of Qualified Digital Signature and the publication and dissemination of documents signed in digital format are analyzed. In order to support the case study, a methodology was adopted that included interviews with municipalities that are part of the Intermunicipal Community of the region of Leiria and a computer application was developed that allowed to analyze the documents available in the institutional websites of the municipalities, the ones that were digitally signed. The results show that institutional websites are already providing documentation with Qualified Digital Signature and that the level of trust and authenticity regarding their use is considered to be mostly very positive.

2020-03-18
Shah, Meet D., Mohanty, Manoranjan, Atrey, Pradeep K..  2019.  SecureCSearch: Secure Searching in PDF Over Untrusted Cloud Servers. 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). :347–352.
The usage of cloud for data storage has become ubiquitous. To prevent data leakage and hacks, it is common to encrypt the data (e.g. PDF files) before sending it to a cloud. However, this limits the search for specific files containing certain keywords over an encrypted cloud data. The traditional method is to take down all files from a cloud, store them locally, decrypt and then search over them, defeating the purpose of using a cloud. In this paper, we propose a method, called SecureCSearch, to perform keyword search operations on the encrypted PDF files over cloud in an efficient manner. The proposed method makes use of Shamir's Secret Sharing scheme in a novel way to create encrypted shares of the PDF file and the keyword to search. We show that the proposed method maintains the security of the data and incurs minimal computation cost.
2019-09-04
Vanjari, M. S. P., Balsaraf, M. K. P..  2018.  Efficient Exploration of Algorithm in Scholarly Big Data Document. 2018 International Conference on Information , Communication, Engineering and Technology (ICICET). :1–5.
Algorithms are used to develop, analyzing, and applying in the computer field and used for developing new application. It is used for finding solutions to any problems in different condition. It transforms the problems into algorithmic ones on which standard algorithms are applied. Day by day Scholarly Digital documents are increasing. AlgorithmSeer is a search engine used for searching algorithms. The main aim of it provides a large algorithm database. It is used to automatically encountering and take these algorithms in this big collection of documents that enable algorithm indexing, searching, discovery, and analysis. An original set to identify and pull out algorithm representations in a big collection of scholarly documents is proposed, of scale able techniques used by AlgorithmSeer. Along with this, particularly important and relevant textual content can be accessed the platform and highlight portions by anyone with different levels of knowledge. In support of lectures and self-learning, the highlighted documents can be shared with others. But different levels of learners cannot use the highlighted part of text at same understanding level. The problem of guessing new highlights of partially highlighted documents can be solved by us.
2019-04-05
Vastel, A., Laperdrix, P., Rudametkin, W., Rouvoy, R..  2018.  FP-STALKER: Tracking Browser Fingerprint Evolutions. 2018 IEEE Symposium on Security and Privacy (SP). :728-741.
Browser fingerprinting has emerged as a technique to track users without their consent. Unlike cookies, fingerprinting is a stateless technique that does not store any information on devices, but instead exploits unique combinations of attributes handed over freely by browsers. The uniqueness of fingerprints allows them to be used for identification. However, browser fingerprints change over time and the effectiveness of tracking users over longer durations has not been properly addressed. In this paper, we show that browser fingerprints tend to change frequently-from every few hours to days-due to, for example, software updates or configuration changes. Yet, despite these frequent changes, we show that browser fingerprints can still be linked, thus enabling long-term tracking. FP-STALKER is an approach to link browser fingerprint evolutions. It compares fingerprints to determine if they originate from the same browser. We created two variants of FP-STALKER, a rule-based variant that is faster, and a hybrid variant that exploits machine learning to boost accuracy. To evaluate FP-STALKER, we conduct an empirical study using 98,598 fingerprints we collected from 1, 905 distinct browser instances. We compare our algorithm with the state of the art and show that, on average, we can track browsers for 54.48 days, and 26 % of browsers can be tracked for more than 100 days.
2017-12-20
Chen, C. K., Lan, S. C., Shieh, S. W..  2017.  Shellcode detector for malicious document hunting. 2017 IEEE Conference on Dependable and Secure Computing. :527–528.

Advanced Persistent Threat (APT) attacks became a major network threat in recent years. Among APT attack techniques, sending a phishing email with malicious documents attached is considered one of the most effective ones. Although many users have the impression that documents are harmless, a malicious document may in fact contain shellcode to attack victims. To cope with the problem, we design and implement a malicious document detector called Forensor to differentiate malicious documents. Forensor integrates several open-source tools and methods. It first introspects file format to retrieve objects inside the documents, and then automatically decrypts simple encryption methods, e.g., XOR, rot and shift, commonly used in malware to discover potential shellcode. The emulator is used to verify the presence of shellcode. If shellcode is discovered, the file is considered malicious. The experiment used 9,000 benign files and more than 10,000 malware samples from a well-known sample sharing website. The result shows no false negative and only 2 false positives.

2017-03-07
Lin, C. H., Tien, C. W., Chen, C. W., Tien, C. W., Pao, H. K..  2015.  Efficient spear-phishing threat detection using hypervisor monitor. 2015 International Carnahan Conference on Security Technology (ICCST). :299–303.

In recent years, cyber security threats have become increasingly dangerous. Hackers have fabricated fake emails to spoof specific users into clicking on malicious attachments or URL links in them. This kind of threat is called a spear-phishing attack. Because spear-phishing attacks use unknown exploits to trigger malicious activities, it is difficult to effectively defend against them. Thus, this study focuses on the challenges faced, and we develop a Cloud-threat Inspection Appliance (CIA) system to defend against spear-phishing threats. With the advantages of hardware-assisted virtualization technology, we use the CIA to develop a transparent hypervisor monitor that conceals the presence of the detection engine in the hypervisor kernel. In addition, the CIA also designs a document pre-filtering algorithm to enhance system performance. By inspecting PDF format structures, the proposed CIA was able to filter 77% of PDF attachments and prevent them from all being sent into the hypervisor monitor for deeper analysis. Finally, we tested CIA in real-world scenarios. The hypervisor monitor was shown to be a better anti-evasion sandbox than commercial ones. During 2014, CIA inspected 780,000 mails in a company with 200 user accounts, and found 65 unknown samples that were not detected by commercial anti-virus software.

2017-02-14
B. Gu, Y. Fang, P. Jia, L. Liu, L. Zhang, M. Wang.  2015.  "A New Static Detection Method of Malicious Document Based on Wavelet Package Analysis". 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP). :333-336.

More and more advanced persistent threat attacks has happened since 2009. This kind of attacks usually use more than one zero-day exploit to achieve its goal. Most of the times, the target computer will execute malicious program after the user open an infected compound document. The original detection method becomes inefficient as the attackers using a zero-day exploit to structure these compound documents. Inspired by the detection method based on structural entropy, we apply wavelet analysis to malicious document detection system. In our research, we use wavelet analysis to extract features from the raw data. These features will be used todetect whether the compound document was embed malicious code.