Visible to the public Biblio

Filters: Keyword is combinatorial testing  [Clear All Filters]
2022-04-19
Garn, Bernhard, Sebastian Lang, Daniel, Leithner, Manuel, Richard Kuhn, D., Kacker, Raghu, Simos, Dimitris E..  2021.  Combinatorially XSSing Web Application Firewalls. 2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :85–94.
Cross-Site scripting (XSS) is a common class of vulnerabilities in the domain of web applications. As it re-mains prevalent despite continued efforts by practitioners and researchers, site operators often seek to protect their assets using web application firewalls (WAFs). These systems employ filtering mechanisms to intercept and reject requests that may be suitable to exploit XSS flaws and related vulnerabilities such as SQL injections. However, they generally do not offer complete protection and can often be bypassed using specifically crafted exploits. In this work, we evaluate the effectiveness of WAFs to detect XSS exploits. We develop an attack grammar and use a combinatorial testing approach to generate attack vectors. We compare our vectors with conventional counterparts and their ability to bypass different WAFs. Our results show that the vectors generated with combinatorial testing perform equal or better in almost all cases. They further confirm that most of the rule sets evaluated in this work can be bypassed by at least one of these crafted inputs.
2022-02-22
Lanus, Erin, Freeman, Laura J., Richard Kuhn, D., Kacker, Raghu N..  2021.  Combinatorial Testing Metrics for Machine Learning. 2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :81–84.
This paper defines a set difference metric for comparing machine learning (ML) datasets and proposes the difference between datasets be a function of combinatorial coverage. We illustrate its utility for evaluating and predicting performance of ML models. Identifying and measuring differences between datasets is of significant value for ML problems, where the accuracy of the model is heavily dependent on the degree to which training data are sufficiently representative of data encountered in application. The method is illustrated for transfer learning without retraining, the problem of predicting performance of a model trained on one dataset and applied to another.
2020-09-28
Simos, Dimitris E., Garn, Bernhard, Zivanovic, Jovan, Leithner, Manuel.  2019.  Practical Combinatorial Testing for XSS Detection using Locally Optimized Attack Models. 2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :122–130.
In this paper, we present a combinatorial testing methodology for automated black-box security testing of complex web applications. The focus of our work is the identification of Cross-site Scripting (XSS) vulnerabilities. We introduce a new modelling scheme for test case generation of XSS attack vectors consisting of locally optimized attack models. The modelling approach takes into account the response and behavior of the web application and is particularly efficient when used in conjunction with combinatorial testing. In addition to the modelling scheme, we present a research prototype of a security testing tool called XSSInjector, which executes attack vectors generated from our methodology against web applications. The tool also employs a newly developed test oracle for detecting XSS which allow us to precisely identify whether injected JavaScript is actually executed and thus eliminate false positives. Our testing methodology is sufficiently generic to be applied to any web application that returns HTML code. We describe the foundations of our approach and validate it via an extensive case study using a verification framework and real world web applications. In particular, we have found several new critical vulnerabilities in popular forum software, library management systems and gallery packages.
2020-02-10
Simos, Dimitris E., Zivanovic, Jovan, Leithner, Manuel.  2019.  Automated Combinatorial Testing for Detecting SQL Vulnerabilities in Web Applications. 2019 IEEE/ACM 14th International Workshop on Automation of Software Test (AST). :55–61.

In this paper, we present a combinatorial testing methodology for testing web applications in regards to SQL injection vulnerabilities. We describe three attack grammars that were developed and used to generate concrete attack vectors. Furthermore, we present and evaluate two different oracles used to observe the application's behavior when subjected to such attack vectors. We also present a prototype tool called SQLInjector capable of automated SQL injection vulnerability testing for web applications. The developed methodology can be applied to any web application that uses server side scripting and HTML for handling user input and has a SQL database backend. Our approach relies on the use of a database proxy, making this a gray-box testing method. We establish the effectiveness of the proposed tool with the WAVSEP verification framework and conduct a case study on real-world web applications, where we are able to discover both known vulnerabilities and additional previously undiscovered flaws.

2020-01-21
Tran-Jørgensen, Peter W. V., Kulik, Tomas, Boudjadar, Jalil, Larsen, Peter Gorm.  2019.  Security Analysis of Cloud-Connected Industrial Control Systems Using Combinatorial Testing. Proceedings of the 17th ACM-IEEE International Conference on Formal Methods and Models for System Design. :1–11.

Industrial control systems are moving from monolithic to distributed and cloud-connected architectures, which increases system complexity and vulnerability, thus complicates security analysis. When exhaustive verification accounts for this complexity the state space being sought grows drastically as the system model evolves and more details are considered. Eventually this may lead to state space explosion, which makes exhaustive verification infeasible. To address this, we use VDM-SL's combinatorial testing feature to generate security attacks that are executed against the model to verify whether the system has the desired security properties. We demonstrate our approach using a cloud-connected industrial control system that is responsible for performing safety-critical tasks and handling client requests sent to the control network. Although the approach is not exhaustive it enables verification of mitigation strategies for a large number of attacks and complex systems within reasonable time.

2017-02-14
J. J. Li, P. Abbate, B. Vega.  2015.  "Detecting Security Threats Using Mobile Devices". 2015 IEEE International Conference on Software Quality, Reliability and Security - Companion. :40-45.

In our previous work [1], we presented a study of using performance escalation to automatic detect Distributed Denial of Service (DDoS) types of attacks. We propose to enhance the work of security threat detection by using mobile phones as the detector to identify outliers of normal traffic patterns as threats. The mobile solution makes detection portable to any services. This paper also shows that the same detection method works for advanced persistent threats.