Biblio
With the rapid development of the Internet of vehicles, there is a huge amount of multimedia data becoming a hidden trouble in the Internet of Things. Therefore, it is necessary to process and store them in real time as a way of big data curation. In this paper, a method of real-time processing and storage based on CDN in vehicle monitoring system is proposed. The MPEG-DASH standard is used to process the multimedia data by dividing them into MPD files and media segments. A real-time monitoring system of vehicle on the basis of the method introduced is designed and implemented.
The Web ecosystem has been evolving over the past years and new Internet protocols, namely HTTP/2 over TLS/TCP and QUIC/UDP, are now used to deliver Web contents. Similarly, CDNs (Content Delivery Network) are deployed worldwide, caching contents close to end-users to optimize web browsing quality. We present in this paper an analysis of the influence of the Internet protocols and CDN on the Top 10,000 Alexa websites, based on a 12-month measurement campaign (from April 2018 to April 2019) performed via our tool Web View [1]. Part of our measurements are made public, represented on a monitoring website1, showing the results for the Top 50 Alexa Websites plus few specific websites and 8 french websites, suggested by the French Agency in charge of regulating telecommunications. Our analysis of this long-term measurement campaign allows to better analyze the delivery of public websites. For instance, it shows that even if some argue that QUIC optimizes the quality, it is not observed in the real-life since QUIC is not largely deployed. Our method for analyzing CDN delivery in the Web browsing allows us to evaluate its influence, which is important since their usage can decrease the web pages' loading time, on average 43.1% with HTTP/2 and 38.5% with QUIC, when requesting a second time the same home page.
The semantics of online authentication in the web are rather straightforward: if Alice has a certificate binding Bob's name to a public key, and if a remote entity can prove knowledge of Bob's private key, then (barring key compromise) that remote entity must be Bob. However, in reality, many websites' and the majority of the most popular ones-are hosted at least in part by third parties such as Content Delivery Networks (CDNs) or web hosting providers. Put simply: administrators of websites who deal with (extremely) sensitive user data are giving their private keys to third parties. Importantly, this sharing of keys is undetectable by most users, and widely unknown even among researchers. In this paper, we perform a large-scale measurement study of key sharing in today's web. We analyze the prevalence with which websites trust third-party hosting providers with their secret keys, as well as the impact that this trust has on responsible key management practices, such as revocation. Our results reveal that key sharing is extremely common, with a small handful of hosting providers having keys from the majority of the most popular websites. We also find that hosting providers often manage their customers' keys, and that they tend to react more slowly yet more thoroughly to compromised or potentially compromised keys.
The semantics of online authentication in the web are rather straightforward: if Alice has a certificate binding Bob's name to a public key, and if a remote entity can prove knowledge of Bob's private key, then (barring key compromise) that remote entity must be Bob. However, in reality, many websites' and the majority of the most popular ones-are hosted at least in part by third parties such as Content Delivery Networks (CDNs) or web hosting providers. Put simply: administrators of websites who deal with (extremely) sensitive user data are giving their private keys to third parties. Importantly, this sharing of keys is undetectable by most users, and widely unknown even among researchers. In this paper, we perform a large-scale measurement study of key sharing in today's web. We analyze the prevalence with which websites trust third-party hosting providers with their secret keys, as well as the impact that this trust has on responsible key management practices, such as revocation. Our results reveal that key sharing is extremely common, with a small handful of hosting providers having keys from the majority of the most popular websites. We also find that hosting providers often manage their customers' keys, and that they tend to react more slowly yet more thoroughly to compromised or potentially compromised keys.
The main usage pattern of internet is shifting from traditional host-to-host central model to content dissemination model. It leads to the pretty prompt growth in Internet content. CDN and P2P are two mainstream techmologies to provide streaming content services in the current Internet. In recent years, some researchers have begun to focus on CDN-P2P-hybrid architecture and ISP-friendly P2P content delivery technology. Web applications have become one of the fundamental internet services. How to effectively support the popular browser-based web application is one of keys to success for future internet projects. This paper proposes ID based browser with caching in IDNet. IDNet consists of id/locator separation scheme and domain-insulated autonomous network architecture (DIANA) which redesign the future internet in the clean slate basis. Experiment shows that ID web browser with caching function can support how to disseminate content and how to find the closet network in IDNet having identical contents.