Biblio
Ultra high frequency (UHF) partial discharge detection technology has been widely used in on-line monitoring of electrical equipment, for the influence factors of UHF signal's transfer function is complicated, the calibration of UHF method is still not realized until now. In order to study the calibration influence factors of UHF partial discharge (PD) detector, the discharge mechanism of typical PD defects is analyzed, and use a PD UHF signal simulator with multiple adjustable parameters to simulate types of PD UHF signals of electrical equipment, then performed the relative experimental research in propagation characteristics and Sensor characteristics of UHF signals. It is concluded that the calibration reliability has big differences between UHF signal energy and discharge capacity of different discharge source. The calibration curve of corona discharge and suspended discharge which can representation the severity of equipment insulation defect more accurate, and the calibration curve of internal air gap discharge and dielectric surface discharge is poorer. The distance of UHF signal energy decays to stable period become smaller with increase of frequency, and the decay of UHF signal energy is irrelevant to its frequencies when the measuring angle is changing. The frequency range of measuring UHF signal depends on effective frequency range of measurement sensor, moreover, the gain and standing-wave ratio of sensor and the energy of the received signal manifested same change trend. Therefore, in order to calibration the UHF signal, it is necessary to comprehensive consideration the specific discharge type and measuring condition. The results provide the favorable reference for a further study to build the calibration system of UHF measuring method, and to promote the effective application of UHF method in sensor characteristic fault diagnosis and insulation evaluation of electrical equipment.
The relative permittivity (also known as dielectric constant) is one of the physical properties that characterize a substance. The measurement of its magnitude can be useful in the analysis of several fluids, playing an important role in many industrial processes. This paper presents a method for measuring the relative permittivity of fluids, with the possibility of real-time monitoring. The method comprises the immersion of a capacitive sensor inside a tank or duct, in order to have the inspected substance as its dielectric. An electronic circuit is responsible for exciting this sensor, which will have its capacitance measured through a quick analysis of two analog signals outputted by the circuit. The developed capacitance meter presents a novel topology derived from the well-known Howland current source. One of its main advantages is the capacitance-selective behavior, which allows the system to overcome the effects of parasitic resistive and inductive elements on its readings. In addition to an adjustable current output that suits different impedance magnitudes, it exhibits a steady oscillating behavior, thus allowing continuous operation without any form of external control. This paper presents experimental results obtained from the proposed system and compares them to measurements made with proven and calibrated equipment. Two initial capacitance measurements performed with the system for evaluating the sensor's characteristics exhibited relative errors of approximately 0.07% and 0.53% in comparison to an accurate workbench LCR meter.
Physical unclonable functions (PUFs) are devices which are easily probed but difficult to predict. Optical PUFs have been discussed within the literature, with traditional optical PUFs typically using spatial light modulators, coherent illumination, and scattering volumes; however, these systems can be large, expensive, and difficult to maintain alignment in practical conditions. We propose and demonstrate a new kind of optical PUF based on computational imaging and compressive sensing to address these challenges with traditional optical PUFs. This work describes the design, simulation, and prototyping of this computational optical PUF (COPUF) that utilizes incoherent polychromatic illumination passing through an additively manufactured refracting optical polymer element. We demonstrate the ability to pass information through a COPUF using a variety of sampling methods, including the use of compressive sensing. The sensitivity of the COPUF system is also explored. We explore non-traditional PUF configurations enabled by the COPUF architecture. The double COPUF system, which employees two serially connected COPUFs, is proposed and analyzed as a means to authenticate and communicate between two entities that have previously agreed to communicate. This configuration enables estimation of a message inversion key without the calculation of individual COPUF inversion keys at any point in the PUF life cycle. Our results show that it is possible to construct inexpensive optical PUFs using computational imaging. This could lead to new uses of PUFs in places where electrical PUFs cannot be utilized effectively, as low cost tags and seals, and potentially as authenticating and communicating devices.
Due to its low cost and availability, magnetic sensors nowadays are often incorporated into security systems to detect or localize threats. This paper, with the help of a correlated pre-published work, describes preliminary steps to ensure reliable results that could help in reducing inaccuracies/ errors in case of considering a security system that detects Magnetic IEDs employing AMR-based magnetic field sensors.
Given the complexities involved in the sensing, navigational and positioning environment on board automated vehicles we conduct an exploratory survey and identify factors capable of influencing the users' trust in such system. After the analysis of the survey data, the Situational Awareness of the Vehicle (SAV) emerges as an important factor capable of influencing the trust of the users. We follow up on that by conducting semi-structured interviews with 12 experts in the CAV field, focusing on the importance of the SAV, on the factors that are most important when talking about it as well as the need to keep the users informed regarding its status. We conclude that in the context of Connected and Automated Vehicles (CAVs), the importance of the SAV can now be expanded beyond its technical necessity of making vehicles function to a human factors area: calibrating users' trust.
This paper presents a model calibration algorithm for the modulated wideband converter (MWC) with non-ideal analog lowpass filter (LPF). The presented technique uses a test signal to estimate the finite impulse response (FIR) of the practical non-ideal LPF, and then a digital compensation filter is designed to calibrate the approximated FIR filter in the digital domain. At the cost of a moderate oversampling rate, the calibrated filter performs as an ideal LPF. The calibrated model uses the MWC system with non-ideal LPF to capture the samples of underlying signal, and then the samples are filtered by the digital compensation filter. Experimental results indicate that, without making any changes to the architecture of MWC, the proposed algorithm can obtain the samples as that of standard MWC with ideal LPF, and the signal can be reconstructed with overwhelming probability.