Biblio
The pattern recognition in the sparse representation (SR) framework has been very successful. In this model, the test sample can be represented as a sparse linear combination of training samples by solving a norm-regularized least squares problem. However, the value of regularization parameter is always indiscriminating for the whole dictionary. To enhance the group concentration of the coefficients and also to improve the sparsity, we propose a new SR model called adaptive sparse representation classifier(ASRC). In ASRC, a sparse coefficient strengthened item is added in the objective function. The model is solved by the artificial bee colony (ABC) algorithm with variable step to speed up the convergence. Also, a partition strategy for large scale dictionary is adopted to lighten bee's load and removes the irrelevant groups. Through different data sets, we empirically demonstrate the property of the new model and its recognition performance.
Based on the feature analysis of image content, this paper proposes a novel steganalytic method for grayscale images in spatial domain. In this work, we firstly investigates directional lifting wavelet transform (DLWT) as a sparse representation in compressive sensing (CS) domain. Then a block CS (BCS) measurement matrix is designed by using the generalized Gaussian distribution (GGD) model, in which the measurement matrix can be used to sense the DLWT coefficients of images to reflect the feature residual introduced by steganography. Extensive experiments are showed that proposed scheme CS-based is feasible and universal for detecting stegography in spatial domain.
Compressive sensing is a new technique by which sparse signals are sampled and recovered from a few measurements. To address the disadvantages of traditional space image compressing methods, a complete new compressing scheme under the compressive sensing framework was developed in this paper. Firstly, in the coding stage, a simple binary measurement matrix was constructed to obtain signal measurements. Secondly, the input image was divided into small blocks. The image blocks then would be used as training sets to get a dictionary basis for sparse representation with learning algorithm. At last, sparse reconstruction algorithm was used to recover the original input image. Experimental results show that both the compressing rate and image recovering quality of the proposed method are high. Besides, as the computation cost is very low in the sampling stage, it is suitable for on-board applications in astronomy.
Fingerprint-based Audio recognition system must address concurrent objectives. Indeed, fingerprints must be both robust to distortions and discriminative while their dimension must remain to allow fast comparison. This paper proposes to restate these objectives as a penalized sparse representation problem. On top of this dictionary-based approach, we propose a structured sparsity model in the form of a probabilistic distribution for the sparse support. A practical suboptimal greedy algorithm is then presented and evaluated on robustness and recognition tasks. We show that some existing methods can be seen as particular cases of this algorithm and that the general framework allows to reach other points of a Pareto-like continuum.
The main focus of this work is the estimation of a complex valued signal assumed to have a sparse representation in an uncountable dictionary of signals. The dictionary elements are parameterized by a real-valued vector and the available observations are corrupted with an additive noise. By applying a linearization technique, the original model is recast as a constrained sparse perturbed model. The problem of the computation of the involved multiple parameters is addressed from a nonconvex optimization viewpoint. A cost function is defined including an arbitrary Lipschitz differentiable data fidelity term accounting for the noise statistics, and an ℓ0-like penalty. A proximal algorithm is then employed to solve the resulting nonconvex and nonsmooth minimization problem. Experimental results illustrate the good practical performance of the proposed approach when applied to 2D spectrum analysis.