Biblio
In this paper, the design as well as complete implementation of a robot which can be autonomously controlled for surveillance. It can be seamlessly integrated into an existing security system already present. The robot's inherent ability allows it to map the interiors of an unexplored building and steer autonomously using its self-ruling and pilot feature. It uses a 2D LIDAR to map its environment in real-time and HD camera records suspicious activity. It also features an in-built display with touch based commands and voice recognition that enables people to interact with the robot during any situation.
Compressive Sampling and Sparse reconstruction theory is applied to a linearly frequency modulated continuous wave hybrid lidar/radar system. The goal is to show that high resolution time of flight measurements to underwater targets can be obtained utilizing far fewer samples than dictated by Nyquist sampling theorems. Traditional mixing/down-conversion and matched filter signal processing methods are reviewed and compared to the Compressive Sampling and Sparse Reconstruction methods. Simulated evidence is provided to show the possible sampling rate reductions, and experiments are used to observe the effects that turbid underwater environments have on recovery. Results show that by using compressive sensing theory and sparse reconstruction, it is possible to achieve significant sample rate reduction while maintaining centimeter range resolution.