Visible to the public Biblio

Filters: Keyword is optical radar  [Clear All Filters]
2020-12-15
Shanavas, H., Ahmed, S. A., Hussain, M. H. Safwat.  2018.  Design of an Autonomous Surveillance Robot Using Simultaneous Localization and Mapping. 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C). :64—68.

In this paper, the design as well as complete implementation of a robot which can be autonomously controlled for surveillance. It can be seamlessly integrated into an existing security system already present. The robot's inherent ability allows it to map the interiors of an unexplored building and steer autonomously using its self-ruling and pilot feature. It uses a 2D LIDAR to map its environment in real-time and HD camera records suspicious activity. It also features an in-built display with touch based commands and voice recognition that enables people to interact with the robot during any situation.

2020-07-06
Mao, Zhong, Yan, Yujie, Wu, Jiahao, Hajjar, Jerome F., Padir, Taskin.  2019.  Automated Damage Assessment of Critical Infrastructure Using Online Mapping Technique with Small Unmanned Aircraft Systems. 2019 IEEE International Symposium on Technologies for Homeland Security (HST). :1–5.
Rapid inspection and assessment of critical infrastructure after man-made and natural disasters is a matter of homeland security. The primary aim of this paper is to demonstrate the potential of leveraging small Unmanned Aircraft System (sUAS) in support of the rapid recovery of critical infrastructure in the aftermath of catastrophic events. We propose our data collection, detection and assessment system, using a sUAS equipped with a Lidar and a camera. This method provides a solution in fast post-disaster response and assists human responders in damage investigation.
2017-02-21
R. Lee, L. Mullen, P. Pal, D. Illig.  2015.  "Time of flight measurements for optically illuminated underwater targets using Compressive Sampling and Sparse reconstruction". OCEANS 2015 - MTS/IEEE Washington. :1-6.

Compressive Sampling and Sparse reconstruction theory is applied to a linearly frequency modulated continuous wave hybrid lidar/radar system. The goal is to show that high resolution time of flight measurements to underwater targets can be obtained utilizing far fewer samples than dictated by Nyquist sampling theorems. Traditional mixing/down-conversion and matched filter signal processing methods are reviewed and compared to the Compressive Sampling and Sparse Reconstruction methods. Simulated evidence is provided to show the possible sampling rate reductions, and experiments are used to observe the effects that turbid underwater environments have on recovery. Results show that by using compressive sensing theory and sparse reconstruction, it is possible to achieve significant sample rate reduction while maintaining centimeter range resolution.