Visible to the public Biblio

Filters: Keyword is fast Fourier transforms  [Clear All Filters]
2020-08-03
Liu, Meng, Wang, Longbiao, Dang, Jianwu, Nakagawa, Seiichi, Guan, Haotian, Li, Xiangang.  2019.  Replay Attack Detection Using Magnitude and Phase Information with Attention-based Adaptive Filters. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :6201–6205.
Automatic Speech Verification (ASV) systems are highly vulnerable to spoofing attacks, and replay attack poses the greatest threat among various spoofing attacks. In this paper, we propose a novel multi-channel feature extraction method with attention-based adaptive filters (AAF). Original phase information, discarded by conventional feature extraction techniques after Fast Fourier Transform (FFT), is promising in distinguishing genuine from replay spoofed speech. Accordingly, phase and magnitude information are respectively extracted as phase channel and magnitude channel complementary features in our system. First, we make discriminative ability analysis on full frequency bands with F-ratio methods. Then attention-based adaptive filters are implemented to maximize capturing of high discriminative information on frequency bands, and the results on ASVspoof 2017 challenge indicate that our proposed approach achieved relative error reduction rates of 78.7% and 59.8% on development and evaluation dataset than the baseline method.
2020-05-11
Liu, Weiyou, Liu, Xu, Di, Xiaoqiang, Qi, Hui.  2019.  A novel network intrusion detection algorithm based on Fast Fourier Transformation. 2019 1st International Conference on Industrial Artificial Intelligence (IAI). :1–6.
Deep learning techniques have been widely used in intrusion detection, but their application on convolutional neural networks (CNN) is still immature. The main challenge is how to represent the network traffic to improve performance of the CNN model. In this paper, we propose a network intrusion detection algorithm based on representation learning using Fast Fourier Transformation (FFT), which is first exploration that converts traffic to image by FFT to the best of our knowledge. Each traffic is converted to an image and then the intrusion detection problem is turned to image classification. The experiment results on NSL-KDD dataset show that the classification performence of the algorithm in the CNN model has obvious advantages compared with other algorithms.
2018-12-10
Khan, M., Reza, M. Q., Sirdeshmukh, S. P. S. M. A..  2017.  A prototype model development for classification of material using acoustic resonance spectroscopy. 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT). :128–131.

In this work, a measurement system is developed based on acoustic resonance which can be used for classification of materials. Basically, the inspection methods based on acoustic, utilized for containers screening in the field, identification of defective pills hold high significance in the fields of health, security and protection. However, such techniques are constrained by costly instrumentation, offline analysis and complexities identified with transducer holder physical coupling. So a simple, non-destructive and amazingly cost effective technique in view of acoustic resonance has been formulated here for quick data acquisition and analysis of acoustic signature of liquids for their constituent identification and classification. In this system, there are two ceramic coated piezoelectric transducers attached at both ends of V-shaped glass, one is act as transmitter and another as receiver. The transmitter generates sound with the help of white noise generator. The pick up transducer on another end of the V-shaped glass rod detects the transmitted signal. The recording is being done with arduino interfaced to computer. The FFTs of recorded signals are being analyzed and the resulted resonant frequency observed for water, water+salt and water+sugar are 4.8 KHz, 6.8 KHz and 3.2 KHz respectively. The different resonant frequency in case different sample is being observed which shows that the developed prototype model effectively classifying the materials.

2017-02-21
Liang Zhongyin, Huang Jianjun, Huang Jingxiong.  2015.  "Sub-sampled IFFT based compressive sampling". TENCON 2015 - 2015 IEEE Region 10 Conference. :1-4.

In this paper, a new approach based on Sub-sampled Inverse Fast Fourier Transform (SSIFFT) for efficiently acquiring compressive measurements is proposed, which is motivated by random filter based method and sub-sampled FFT. In our approach, to start with, we multiply the FFT of input signal and that of random-tap FIR filter in frequency domain and then utilize SSIFFT to obtain compressive measurements in the time domain. It requires less data storage and computation than the existing methods based on random filter. Moreover, it is suitable for both one-dimensional and two-dimensional signals. Experimental results show that the proposed approach is effective and efficient.