Visible to the public Biblio

Filters: Keyword is failure analysis  [Clear All Filters]
2015-05-01
Yihai Zhu, Jun Yan, Yufei Tang, Yan Sun, Haibo He.  2014.  The sequential attack against power grid networks. Communications (ICC), 2014 IEEE International Conference on. :616-621.

The vulnerability analysis is vital for safely running power grids. The simultaneous attack, which applies multiple failures simultaneously, does not consider the time domain in applying failures, and is limited to find unknown vulnerabilities of power grid networks. In this paper, we discover a new attack scenario, called the sequential attack, in which the failures of multiple network components (i.e., links/nodes) occur at different time. The sequence of such failures can be carefully arranged by attackers in order to maximize attack performances. This attack scenario leads to a new angle to analyze and discover vulnerabilities of grid networks. The IEEE 39 bus system is adopted as test benchmark to compare the proposed attack scenario with the existing simultaneous attack scenario. New vulnerabilities are found. For example, the sequential failure of two links, e.g., links 26 and 39 in the test benchmark, can cause 80% power loss, whereas the simultaneous failure of them causes less than 10% power loss. In addition, the sequential attack is demonstrated to be statistically stronger than the simultaneous attack. Finally, several metrics are compared and discussed in terms of whether they can be used to sharply reduce the search space for identifying strong sequential attacks.

2015-04-30
Di Benedetto, M.D., D'Innocenzo, A., Smarra, F..  2014.  Fault-tolerant control of a wireless HVAC control system. Communications, Control and Signal Processing (ISCCSP), 2014 6th International Symposium on. :235-238.

In this paper we address the problem of designing a fault tolerant control scheme for an HVAC control system where sensing and actuation data are exchanged with a centralized controller via a wireless sensors and actuators network where the communication nodes are subject to permanent failures and malicious intrusions.

Godwin, J.L., Matthews, P..  2014.  Rapid labelling of SCADA data to extract transparent rules using RIPPER. Reliability and Maintainability Symposium (RAMS), 2014 Annual. :1-7.

This paper addresses a robust methodology for developing a statistically sound, robust prognostic condition index and encapsulating this index as a series of highly accurate, transparent, human-readable rules. These rules can be used to further understand degradation phenomena and also provide transparency and trust for any underlying prognostic technique employed. A case study is presented on a wind turbine gearbox, utilising historical supervisory control and data acquisition (SCADA) data in conjunction with a physics of failure model. Training is performed without failure data, with the technique accurately identifying gearbox degradation and providing prognostic signatures up to 5 months before catastrophic failure occurred. A robust derivation of the Mahalanobis distance is employed to perform outlier analysis in the bivariate domain, enabling the rapid labelling of historical SCADA data on independent wind turbines. Following this, the RIPPER rule learner was utilised to extract transparent, human-readable rules from the labelled data. A mean classification accuracy of 95.98% of the autonomously derived condition was achieved on three independent test sets, with a mean kappa statistic of 93.96% reported. In total, 12 rules were extracted, with an independent domain expert providing critical analysis, two thirds of the rules were deemed to be intuitive in modelling fundamental degradation behaviour of the wind turbine gearbox.