Visible to the public Biblio

Filters: Keyword is biomedical MRI  [Clear All Filters]
2021-03-09
Suresh, V., Rajashree, S..  2020.  Establishing Authenticity for DICOM images using ECC algorithm. 2020 Sixth International Conference on Bio Signals, Images, and Instrumentation (ICBSII). :1—4.

Preserving medical data is of utmost importance to stake holders. There are not many laws in India about preservation, usability of patient records. When data is transmitted across the globe there are chances of data getting tampered intentionally or accidentally. Tampered data loses its authenticity for diagnostic purpose, research and various other reasons. This paper proposes an authenticity based ECDSA algorithm by signature verification to identify the tampering of medical image files and alerts by the rules of authenticity. The algorithm can be used by researchers, doctors or any other educated person in order to maintain the authenticity of the record. Presently it is applied on medical related image files like DICOM. However, it can support any other medical related image files and still preserve the authenticity.

2021-02-03
Cecotti, H., Richard, Q., Gravellier, J., Callaghan, M..  2020.  Magnetic Resonance Imaging Visualization in Fully Immersive Virtual Reality. 2020 6th International Conference of the Immersive Learning Research Network (iLRN). :205—209.

The availability of commercial fully immersive virtual reality systems allows the proposal and development of new applications that offer novel ways to visualize and interact with multidimensional neuroimaging data. We propose a system for the visualization and interaction with Magnetic Resonance Imaging (MRI) scans in a fully immersive learning environment in virtual reality. The system extracts the different slices from a DICOM file and presents the slices in a 3D environment where the user can display and rotate the MRI scan, and select the clipping plane in all the possible orientations. The 3D environment includes two parts: 1) a cube that displays the MRI scan in 3D and 2) three panels that include the axial, sagittal, and coronal views, where it is possible to directly access a desired slice. In addition, the environment includes a representation of the brain where it is possible to access and browse directly through the slices with the controller. This application can be used both for educational purposes as an immersive learning tool, and by neuroscience researchers as a more convenient way to browse through an MRI scan to better analyze 3D data.

2020-06-01
Bhargavi, US., Gundibail, Shivaprasad, Manjunath, KN., Renuka, A..  2019.  Security of Medical Big Data Images using Decoy Technique. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :310–314.

Tele-radiology is a technology that helps in bringing the communication between the radiologist, patients and healthcare units situated at distant places. This involves exchange of medical centric data. The medical data may be stored as Electronic Health Records (EHR). These EHRs contain X-Rays, CT scans, MRI reports. Hundreds of scans across multiple radiology centers lead to medical big data (MBD). Healthcare Cloud can be used to handle MBD. Since lack of security to EHRs can cause havoc in medical IT, healthcare cloud must be secure. It should ensure secure sharing and storage of EHRs. This paper proposes the application of decoy technique to provide security to EHRs. The EHRs have the risk of internal attacks and external intrusion. This work addresses and handles internal attacks. It also involves study on honey-pots and intrusion detection techniques. Further it identifies the possibility of an intrusion and alerts the administrator. Also the details of intrusions are logged.

2020-04-20
Kundu, Suprateek, Suthaharan, Shan.  2019.  Privacy-Preserving Predictive Model Using Factor Analysis for Neuroscience Applications. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :67–73.
The purpose of this article is to present an algorithm which maximizes prediction accuracy under a linear regression model while preserving data privacy. This approach anonymizes the data such that the privacy of the original features is fully guaranteed, and the deterioration in predictive accuracy using the anonymized data is minimal. The proposed algorithm employs two stages: the first stage uses a probabilistic latent factor approach to anonymize the original features into a collection of lower dimensional latent factors, while the second stage uses an optimization algorithm to tune the anonymized data further, in a way which ensures a minimal loss in prediction accuracy under the predictive approach specified by the user. We demonstrate the advantages of our approach via numerical studies and apply our method to high-dimensional neuroimaging data where the goal is to predict the behavior of adolescents and teenagers based on functional magnetic resonance imaging (fMRI) measurements.
Kundu, Suprateek, Suthaharan, Shan.  2019.  Privacy-Preserving Predictive Model Using Factor Analysis for Neuroscience Applications. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :67–73.
The purpose of this article is to present an algorithm which maximizes prediction accuracy under a linear regression model while preserving data privacy. This approach anonymizes the data such that the privacy of the original features is fully guaranteed, and the deterioration in predictive accuracy using the anonymized data is minimal. The proposed algorithm employs two stages: the first stage uses a probabilistic latent factor approach to anonymize the original features into a collection of lower dimensional latent factors, while the second stage uses an optimization algorithm to tune the anonymized data further, in a way which ensures a minimal loss in prediction accuracy under the predictive approach specified by the user. We demonstrate the advantages of our approach via numerical studies and apply our method to high-dimensional neuroimaging data where the goal is to predict the behavior of adolescents and teenagers based on functional magnetic resonance imaging (fMRI) measurements.
2020-02-18
Han, Chihye, Yoon, Wonjun, Kwon, Gihyun, Kim, Daeshik, Nam, Seungkyu.  2019.  Representation of White- and Black-Box Adversarial Examples in Deep Neural Networks and Humans: A Functional Magnetic Resonance Imaging Study. 2019 International Joint Conference on Neural Networks (IJCNN). :1–8.

The recent success of brain-inspired deep neural networks (DNNs) in solving complex, high-level visual tasks has led to rising expectations for their potential to match the human visual system. However, DNNs exhibit idiosyncrasies that suggest their visual representation and processing might be substantially different from human vision. One limitation of DNNs is that they are vulnerable to adversarial examples, input images on which subtle, carefully designed noises are added to fool a machine classifier. The robustness of the human visual system against adversarial examples is potentially of great importance as it could uncover a key mechanistic feature that machine vision is yet to incorporate. In this study, we compare the visual representations of white- and black-box adversarial examples in DNNs and humans by leveraging functional magnetic resonance imaging (fMRI). We find a small but significant difference in representation patterns for different (i.e. white- versus black-box) types of adversarial examples for both humans and DNNs. However, human performance on categorical judgment is not degraded by noise regardless of the type unlike DNN. These results suggest that adversarial examples may be differentially represented in the human visual system, but unable to affect the perceptual experience.

2017-02-21
A. Roy, S. P. Maity.  2015.  "On segmentation of CS reconstructed MR images". 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR). :1-6.

This paper addresses the issue of magnetic resonance (MR) Image reconstruction at compressive sampling (or compressed sensing) paradigm followed by its segmentation. To improve image reconstruction problem at low measurement space, weighted linear prediction and random noise injection at unobserved space are done first, followed by spatial domain de-noising through adaptive recursive filtering. Reconstructed image, however, suffers from imprecise and/or missing edges, boundaries, lines, curvatures etc. and residual noise. Curvelet transform is purposely used for removal of noise and edge enhancement through hard thresholding and suppression of approximate sub-bands, respectively. Finally Genetic algorithms (GAs) based clustering is done for segmentation of sharpen MR Image using weighted contribution of variance and entropy values. Extensive simulation results are shown to highlight performance improvement of both image reconstruction and segmentation problems.