Visible to the public Biblio

Filters: Keyword is Design engineering  [Clear All Filters]
2020-10-12
Eckhart, Matthias, Ekelhart, Andreas, Lüder, Arndt, Biffl, Stefan, Weippl, Edgar.  2019.  Security Development Lifecycle for Cyber-Physical Production Systems. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:3004–3011.

As the connectivity within manufacturing processes increases in light of Industry 4.0, information security becomes a pressing issue for product suppliers, systems integrators, and asset owners. Reaching new heights in digitizing the manufacturing industry also provides more targets for cyber attacks, hence, cyber-physical production systems (CPPSs) must be adequately secured to prevent malicious acts. To achieve a sufficient level of security, proper defense mechanisms must be integrated already early on in the systems' lifecycle and not just eventually in the operation phase. Although standardization efforts exist with the objective of guiding involved stakeholders toward the establishment of a holistic industrial security concept (e.g., IEC 62443), a dedicated security development lifecycle for systems integrators is missing. This represents a major challenge for engineers who lack sufficient information security knowledge, as they may not be able to identify security-related activities that can be performed along the production systems engineering (PSE) process. In this paper, we propose a novel methodology named Security Development Lifecycle for Cyber-Physical Production Systems (SDL-CPPS) that aims to foster security by design for CPPSs, i.e., the engineering of smart production systems with security in mind. More specifically, we derive security-related activities based on (i) security standards and guidelines, and (ii) relevant literature, leading to a security-improved PSE process that can be implemented by systems integrators. Furthermore, this paper informs domain experts on how they can conduct these security-enhancing activities and provides pointers to relevant works that may fill the potential knowledge gap. Finally, we review the proposed approach by means of discussions in a workshop setting with technical managers of an Austrian-based systems integrator to identify barriers to adopting the SDL-CPPS.

2020-04-24
de Rooij, Sjors, Laguna, Antonio Jarquin.  2019.  Modelling of submerged oscillating water columns with mass transfer for wave energy extraction. 2019 Offshore Energy and Storage Summit (OSES). :1—9.
Oscillating-water-column (OWC) devices are a very important type of wave energy converters which have been extensively studied over the years. Although most designs of OWC are based on floating or fixed structures exposed above the surface level, little is known from completely submerged systems which can benefit from reduced environmental loads and a simplified structural design. The submerged type of resonant duct consists of two OWCs separated by a weir and air chamber instead of the commonly used single column. Under conditions close to resonance, water flows from the first column into the second one, resulting in a positive flow through the system from which energy can be extracted by a hydro turbine. While existing work has looked at the study of the behaviour of one OWC, this paper addresses the dynamic interaction between the two water columns including the mass transfer mechanism as well as the associated change of momentum. A numerical time-domain model is used to obtain some initial results on the performance and response of the system for different design parameters. The model is derived from 1D conservation of mass and momentum equations, including hydrodynamic effects, adiabatic air compressibility and turbine induced damping. Preliminary results indicate that the mass transfer has an important effect both on the resonance amplification and on the phase between the motion of the two columns. Simulation results are presented for the system performance over several weir heights and regular wave conditions. Further work will continue in design optimization and experimental validation of the proposed model.
2020-01-27
Hsu, Hsiao-Tzu, Jong, Gwo-Jia, Chen, Jhih-Hao, Jhe, Ciou-Guo.  2019.  Improve Iot Security System Of Smart-Home By Using Support Vector Machine. 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS). :674–677.
The traditional smart-home is designed to integrate the concept of the Internet of Things(IoT) into our home environment, and to improve the comfort of home. It connects electrical products and household goods to the network, and then monitors and controls them. However, this paper takes home safety as the main axis of research. It combines the past concept of smart-home and technology of machine learning to improve the whole system of smart-home. Through systematic self-learning, it automatically figure out whether it is normal or abnormal, and reports to remind building occupants safety. At the same time, it saves the cost of human resources preservation. This paper make a set of rules table as the basic criteria first, and then classify a part of data which collected by traditional Internet of Things of smart-home by manual way, which includes the opening and closing of doors and windows, the starting and stopping of motors, the connection and interruption of the system, and the time of sending each data to label, then use Support Vector Machine(SVM) algorithm to classify and build models, and then train it. The executed model is applied to our smart-home system. Finally, we verify the Accuracy of anomaly reporting in our system.
2018-12-03
Shearon, C. E..  2018.  IPC-1782 standard for traceability of critical items based on risk. 2018 Pan Pacific Microelectronics Symposium (Pan Pacific). :1–3.

Traceability has grown from being a specialized need for certain safety critical segments of the industry, to now being a recognized value-add tool for the industry as a whole that can be utilized for manual to automated processes End to End throughout the supply chain. The perception of traceability data collection persists as being a burden that provides value only when the most rare and disastrous of events take place. Disparate standards have evolved in the industry, mainly dictated by large OEM companies in the market create confusion, as a multitude of requirements and definitions proliferate. The intent of the IPC-1782 project is to bring the whole principle of traceability up to date and enable business to move faster, increase revenue, increase productivity, and decrease costs as a result of increased trust. Traceability, as defined in this standard will represent the most effective quality tool available, becoming an intrinsic part of best practice operations, with the encouragement of automated data collection from existing manufacturing systems which works well with Industry 4.0, integrating quality, reliability, product safety, predictive (routine, preventative, and corrective) maintenance, throughput, manufacturing, engineering and supply-chain data, reducing cost of ownership as well as ensuring timeliness and accuracy all the way from a finished product back through to the initial materials and granular attributes about the processes along the way. The goal of this standard is to create a single expandable and extendable data structure that can be adopted for all levels of traceability and enable easily exchanged information, as appropriate, across many industries. The scope includes support for the most demanding instances for detail and integrity such as those required by critical safety systems, all the way through to situations where only basic traceability, such as for simple consumer products, are required. A key driver for the adoption of the standard is the ability to find a relevant and achievable level of traceability that exactly meets the requirement following risk assessment of the business. The wealth of data accessible from traceability for analysis (e.g.; Big Data, etc.) can easily and quickly yield information that can raise expectations of very significant quality and performance improvements, as well as providing the necessary protection against the costs of issues in the market and providing very timely information to regulatory bodies along with consumers/customers as appropriate. This information can also be used to quickly raise yields, drive product innovation that resonates with consumers, and help drive development tests & design requirements that are meaningful to the Marketplace. Leveraging IPC 1782 to create the best value of Component Traceability for your business.