Visible to the public Biblio

Filters: Keyword is Product design  [Clear All Filters]
2023-04-14
Lai, Chengzhe, Wang, Yinzhen.  2022.  Achieving Efficient and Secure Query in Blockchain-based Traceability Systems. 2022 19th Annual International Conference on Privacy, Security & Trust (PST). :1–5.
With the rapid development of blockchain technology, it provides a new technical solution for secure storage of data and trusted computing. However, in the actual application of data traceability, blockchain technology has an obvious disadvantage: the large amount of data stored in the blockchain system will lead to a long response time for users to query data. Higher query delay severely restricts the development of block chain technology in the traceability system. In order to solve this problem, we propose an efficient, secure and low storage overhead blockchain query scheme. Specifically, we design an index structure independent of Merkle tree to support efficient intra-block query, and create new fields in the block header to optimize inter-block query. Compared with several existing schemes, our scheme ensures the security of data. Finally, we simulate and evaluate our proposed scheme. The results show that the proposed scheme has better execution efficiency while reducing additional overhead.
2023-02-02
Moon, S. J., Nagalingam, D., Ngow, Y. T., Quah, A. C. T..  2022.  Combining Enhanced Diagnostic-Driven Analysis Scheme and Static Near Infrared Photon Emission Microscopy for Effective Scan Failure Debug. 2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). :1–6.
Software based scan diagnosis is the de facto method for debugging logic scan failures. Physical analysis success rate is high on dies diagnosed with maximum score, one symptom, one suspect and shorter net. This poses a limitation on maximum utilization of scan diagnosis data for PFA. There have been several attempts to combine dynamic fault isolation techniques with scan diagnosis results to enhance the utilization and success rate. However, it is not a feasible approach for foundry due to limited product design and test knowledge and hardware requirements such as probe card and tester. Suitable for a foundry, an enhanced diagnosis-driven analysis scheme was proposed in [1] that classifies the failures as frontend-of-line (FEOL) and backend-of-line (BEOL) improving the die selection process for PFA. In this paper, static NIR PEM and defect prediction approach are applied on dies that are already classified as FEOL and BEOL failures yet considered unsuitable for PFA due to low score, multiple symptoms, and suspects. Successful case studies are highlighted to showcase the effectiveness of using static NIR PEM as the next level screening process to further maximize the scan diagnosis data utilization.
2022-09-09
Zhang, Junwei, Liu, Jiaqi, Zhu, Yujie, He, Fan, Feng, Su, Li, Jing.  2021.  Whole-chain supervision method of industrial product quality and safety based on knowledge graph. 2021 IEEE International Conference on Industrial Application of Artificial Intelligence (IAAI). :74—78.
With the rapid improvement of China's industrial production level, there are an increasing number of industrial enterprises and kinds of products. The quality and safety supervision of industrial products is an important step to ensure people's livelihood safety. The current supervision includes a number of processes, such as risk monitoring, public opinion analysis, supervision, spot check and postprocessing. The lack of effective information integration and sharing between the above processes cannot support the implementation of whole-chain regulation well. This paper proposes a whole-chain supervision method of industrial product quality and safety based on a knowledge graph, which integrates massive and complex data of the whole chain and visually displays the relationships between entities in the regulatory process. This method can effectively solve the problem of information islands and track and locate the quality problems of large-scale industrial products.
2022-04-19
Liévin, Romain, Jamont, Jean-Paul, Hely, David.  2021.  CLASA : a Cross-Layer Agent Security Architecture for networked embedded systems. 2021 IEEE International Conference on Omni-Layer Intelligent Systems (COINS). :1–8.

Networked embedded systems (which include IoT, CPS, etc.) are vulnerable. Even though we know how to secure these systems, their heterogeneity and the heterogeneity of security policies remains a major problem. Designers face ever more sophisticated attacks while they are not always security experts and have to get a trade-off on design criteria. We propose in this paper the CLASA architecture (Cross-Layer Agent Security Architecture), a generic, integrated, inter-operable, decentralized and modular architecture which relies on cross-layering.

2022-04-13
Deepika, P., Kaliraj, S..  2021.  A Survey on Pest and Disease Monitoring of Crops. 2021 3rd International Conference on Signal Processing and Communication (ICPSC). :156–160.
Maintenance of Crop health is essential for the successful farming for both yield and product quality. Pest and disease in crops are serious problem to be monitored. pest and disease occur in different stages or phases of crop development. Due to introduction of genetically modified seeds the natural resistance of crops to prevent them from pest and disease is less. Major crop loss is due to pest and disease attack in crops. It damages the leaves, buds, flowers and fruits of the crops. Affected areas and damage levels of pest and diseases attacks are growing rapidly based on global climate change. Weather Conditions plays a major role in pest and disease attacks in crops. Naked eye inspection of pest and disease is complex and difficult for wide range of field. And at the same time taking lab samples to detect disease is also inefficient and time-consuming process. Early identification of diseases is important to take necessary actions for preventing crop loss and to avoid disease spreads. So, Timely and effective monitoring of crop health is important. Several technologies have been developed to detect pest and disease in crops. In this paper we discuss the various technologies implemented by using AI and Deep Learning for pest and disease detection. And also, briefly discusses their Advantages and limitations on using certain technology for monitoring of crops.
2021-09-07
Kuchlous, Sahil, Kadaba, Madhura.  2020.  Short Text Intent Classification for Conversational Agents. 2020 IEEE 17th India Council International Conference (INDICON). :1–4.
Intent classification is an important and relevant area of research in artificial intelligence and machine learning, with applications ranging from marketing and product design to intelligent communication. This paper explores the performance of various models and techniques for short text intent classification in the context of chatbots. The problem was explored for use within the mental wellness and therapy chatbot application, Wysa, to give improved responses to free-text user input. The authors looked at classifying text samples in-to 4 categories - assertions, refutations, clarifiers and transitions. For this, the suitability of the following techniques was evaluated: count vectors, TF-IDF, sentence embeddings and n-grams, as well as modifications of the same. Each technique was used to train a number of state-of-the-art classifiers, and the results have been compiled and presented. This is the first documented implementation of Arora's modification to sentence embeddings for real world use. It also introduces a technique to generate custom stop words that gave a significant gain in performance (10 percentage points). The best pipeline, using these techniques together, gave an accuracy of 95 percent.
2020-07-30
Shayan, Mohammed, Bhattacharjee, Sukanta, Song, Yong-Ak, Chakrabarty, Krishnendu, Karri, Ramesh.  2019.  Can Multi-Layer Microfluidic Design Methods Aid Bio-Intellectual Property Protection? 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS). :151—154.
Researchers develop bioassays by rigorously experimenting in the lab. This involves significant fiscal and skilled person-hour investment. A competitor can reverse engineer a bioassay implementation by imaging or taking a video of a biochip when in use. Thus, there is a need to protect the intellectual property (IP) rights of the bioassay developer. We introduce a novel 3D multilayer-based obfuscation to protect a biochip against reverse engineering.
2019-11-12
Hu, Yayun, Li, Dongfang.  2019.  Formal Verification Technology for Asynchronous Communication Protocol. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :482-486.

For aerospace FPGA software products, traditional simulation method faces severe challenges to verify product requirements under complicated scenarios. Given the increasing maturity of formal verification technology, this method can significantly improve verification work efficiency and product design quality, by expanding coverage on those "blind spots" in product design which were not easily identified previously. Taking UART communication as an example, this paper proposes several critical points to use formal verification for asynchronous communication protocol. Experiments and practices indicate that formal verification for asynchronous communication protocol can effectively reduce the time required, ensure a complete verification process and more importantly, achieve more accurate and intuitive results.

2019-03-04
Kannavara, R., Vangore, J., Roberts, W., Lindholm, M., Shrivastav, P..  2018.  Automating Threat Intelligence for SDL. 2018 IEEE Cybersecurity Development (SecDev). :137–137.
Threat intelligence is very important in order to execute a well-informed Security Development Lifecycle (SDL). Although there are many readily available solutions supporting tactical threat intelligence focusing on enterprise Information Technology (IT) infrastructure, the lack of threat intelligence solutions focusing on SDL is a known gap which is acknowledged by the security community. To address this shortcoming, we present a solution to automate the process of mining open source threat information sources to deliver product specific threat indicators designed to strategically inform the SDL while continuously monitoring for disclosures of relevant potential vulnerabilities during product design, development, and beyond deployment.