Visible to the public Biblio

Filters: Keyword is weka tool  [Clear All Filters]
2021-03-09
Susanto, Stiawan, D., Arifin, M. A. S., Idris, M. Y., Budiarto, R..  2020.  IoT Botnet Malware Classification Using Weka Tool and Scikit-learn Machine Learning. 2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI). :15—20.

Botnet is one of the threats to internet network security-Botmaster in carrying out attacks on the network by relying on communication on network traffic. Internet of Things (IoT) network infrastructure consists of devices that are inexpensive, low-power, always-on, always connected to the network, and are inconspicuous and have ubiquity and inconspicuousness characteristics so that these characteristics make IoT devices an attractive target for botnet malware attacks. In identifying whether packet traffic is a malware attack or not, one can use machine learning classification methods. By using Weka and Scikit-learn analysis tools machine learning, this paper implements four machine learning algorithms, i.e.: AdaBoost, Decision Tree, Random Forest, and Naïve Bayes. Then experiments are conducted to measure the performance of the four algorithms in terms of accuracy, execution time, and false positive rate (FPR). Experiment results show that the Weka tool provides more accurate and efficient classification methods. However, in false positive rate, the use of Scikit-learn provides better results.

2021-02-16
Nandi, S., Phadikar, S., Majumder, K..  2020.  Detection of DDoS Attack and Classification Using a Hybrid Approach. 2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP). :41—47.
In the area of cloud security, detection of DDoS attack is a challenging task such that legitimate users use the cloud resources properly. So in this paper, detection and classification of the attacking packets and normal packets are done by using various machine learning classifiers. We have selected the most relevant features from NSL KDD dataset using five (Information gain, gain ratio, chi-squared, ReliefF, and symmetrical uncertainty) commonly used feature selection methods. Now from the entire selected feature set, the most important features are selected by applying our hybrid feature selection method. Since all the anomalous instances of the dataset do not belong to DDoS category so we have separated only the DDoS packets from the dataset using the selected features. Finally, the dataset has been prepared and named as KDD DDoS dataset by considering the selected DDoS packets and normal packets. This KDD DDoS dataset has been discretized using discretize tool in weka for getting better performance. Finally, this discretize dataset has been applied on some commonly used (Naive Bayes, Bayes Net, Decision Table, J48 and Random Forest) classifiers for determining the detection rate of the classifiers. 10 fold cross validation has been used here for measuring the robustness of the system. To measure the efficiency of our hybrid feature selection method, we have also applied the same set of classifiers on the NSL KDD dataset, where it gives the best anomaly detection rate of 99.72% and average detection rate 98.47% similarly, we have applied the same set of classifiers on NSL DDoS dataset and obtain the average DDoS detection of 99.01% and the best DDoS detection rate of 99.86%. In order to compare the performance of our proposed hybrid method, we have also applied the existing feature selection methods and measured the detection rate using the same set of classifiers. Finally, we have seen that our hybrid approach for detecting the DDoS attack gives the best detection rate compared to some existing methods.
2017-02-23
P. Jain, S. Nandanwar.  2015.  "Securing the Clustered Database Using Data Modification Technique". 2015 International Conference on Computational Intelligence and Communication Networks (CICN). :1163-1166.

The new era of information communication and technology (ICT), everyone wants to store/share their Data or information in online media, like in cloud database, mobile database, grid database, drives etc. When the data is stored in online media the main problem is arises related to data is privacy because different types of hacker, attacker or crackers wants to disclose their private information as publically. Security is a continuous process of protecting the data or information from attacks. For securing that information from those kinds of unauthorized people we proposed and implement of one the technique based on the data modification concept with taking the iris database on weka tool. And this paper provides the high privacy in distributed clustered database environments.