Visible to the public Biblio

Filters: Keyword is Repudiation  [Clear All Filters]
2018-05-16
Balakrishnan, Nikilesh, Carata, Lucian, Bytheway, Thomas, Sohan, Ripduman, Hopper, Andy.  2017.  Non-repudiable Disk I/O in Untrusted Kernels. Proceedings of the 8th Asia-Pacific Workshop on Systems. :24:1–24:6.
It is currently impossible for an application to verify that the data it passes to the kernel for storage is actually submitted to an underlying device or that the data returned to an application by the kernel has actually originated from an underlying device. A compromised or malicious OS can silently discard data written by the application or return fabricated data during a read operation. This is a serious data integrity issue for use-cases where verifiable storage and retrieval of data is a necessary precondition for ensuring correct operation, for example with secure logging, APT monitoring and compliance. We outline a solution for verifiable data storage and retrieval by providing a trustworthy mechanism, based on Intel SGX, to authenticate and verify request data at both the application and storage device endpoints. Even in the presence of a malicious OS our design ensures the authenticity and integrity of data while performing disk I/O and detects any data loss attributable to the untrusted OS fabricating or discarding read and write requests respectively. We provide a nascent prototype implementation for the core system together with an evaluation highlighting the temporal overheads imposed by this mechanism.
2017-07-24
Haider, Ihtesham, Höberl, Michael, Rinner, Bernhard.  2016.  Trusted Sensors for Participatory Sensing and IoT Applications Based on Physically Unclonable Functions. Proceedings of the 2Nd ACM International Workshop on IoT Privacy, Trust, and Security. :14–21.

With the emergence of the internet of things (IoT) and participatory sensing (PS) paradigms trustworthiness of remotely sensed data has become a vital research question. In this work, we present the design of a trusted sensor, which uses physically unclonable functions (PUFs) as anchor to ensure integrity, authenticity and non-repudiation guarantees on the sensed data. We propose trusted sensors for mobile devices to address the problem of potential manipulation of mobile sensors' readings by exploiting vulnerabilities of mobile device OS in participatory sensing for IoT applications. Preliminary results from our implementation of trusted visual sensor node show that the proposed security solution can be realized without consuming significant amount of resources of the sensor node.

2017-06-05
Hu, Chunqiang, Li, Ruinian, Li, Wei, Yu, Jiguo, Tian, Zhi, Bie, Rongfang.  2016.  Efficient Privacy-preserving Schemes for Dot-product Computation in Mobile Computing. Proceedings of the 1st ACM Workshop on Privacy-Aware Mobile Computing. :51–59.

Many applications of mobile computing require the computation of dot-product of two vectors. For examples, the dot-product of an individual's genome data and the gene biomarkers of a health center can help detect diseases in m-Health, and that of the interests of two persons can facilitate friend discovery in mobile social networks. Nevertheless, exposing the inputs of dot-product computation discloses sensitive information about the two participants, leading to severe privacy violations. In this paper, we tackle the problem of privacy-preserving dot-product computation targeting mobile computing applications in which secure channels are hardly established, and the computational efficiency is highly desirable. We first propose two basic schemes and then present the corresponding advanced versions to improve efficiency and enhance privacy-protection strength. Furthermore, we theoretically prove that our proposed schemes can simultaneously achieve privacy-preservation, non-repudiation, and accountability. Our numerical results verify the performance of the proposed schemes in terms of communication and computational overheads.

2017-02-23
M. Vahidalizadehdizaj, L. Tao.  2015.  "A new mobile payment protocol (GMPCP) by using a new key agreement protocol (GC)". 2015 IEEE International Conference on Intelligence and Security Informatics (ISI). :169-172.

According to the advancement of mobile devices and wireless network technology, these portable devices became the potential devices that can be used for different types of payments. Recently, most of the people would rather to do their activities by their cellphones. On the other hand, there are some issues that hamper the widespread acceptance of mobile payment among people. The traditional ways of mobile payment are not secure enough, since they follow the traditional flow of data. This paper is going to suggest a new protocol named Golden Mobile Pay Center Protocol that is based on client centric model. The suggested protocol downgrade the computational operations and communications that are necessary between the engaging parties and achieves a completely privacy protection for the engaging parties. It avoids transaction repudiation among the engaging parties and will decrease replay attack s risk. The goal of the protocol is to help n users to have payments to each others'. Besides, it will utilize a new key agreement protocol named Golden Circle that is working by employing symmetric key operations. GMPCP uses GC for generating a shared session key between n users.