Visible to the public Biblio

Filters: Keyword is Gray-scale  [Clear All Filters]
2022-09-30
Kabulov, Anvar, Saymanov, Islambek, Yarashov, Inomjon, Muxammadiev, Firdavs.  2021.  Algorithmic method of security of the Internet of Things based on steganographic coding. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1–5.
In the Internet of Things, it is more important than ever to effectively address the problem of secure transmission based on steganographic substitution by synthesizing digital sensor data. In this case, the degree to which the grayscale message is obscured is a necessary issue. To ensure information security in IoT systems, various methods are used and information security problems are solved to one degree or another. The article proposes a method and algorithm for a computer image in grayscale, in which the value of each pixel is one sample, representing the amount of light, carrying only information about the intensity. The proposed method in grayscale using steganographic coding provides a secure implementation of data transmission in the IoT system. Study results were analyzed using PSNR (Peak Signal to Noise Ratio).
2022-07-05
Sun, Lanxin, Dai, JunBo, Shen, Xunbing.  2021.  Facial emotion recognition based on LDA and Facial Landmark Detection. 2021 2nd International Conference on Artificial Intelligence and Education (ICAIE). :64—67.
Emotion recognition in the field of human-computer interaction refers to that the computer has the corresponding perceptual ability to predict the emotional state of human beings in advance by observing human expressions, behaviors and emotions, so as to ensure that computers can communicate emotionally with humans. The main research work of this paper is to extract facial image features by using Linear Discriminant Analysis (LDA) and Facial Landmark Detection after grayscale processing and cropping, and then compare the accuracy after emotion recognition and classification to determine which feature extraction method is more effective. The test results show that the accuracy rate of emotion recognition in face images can reach 73.9% by using LDA method, and 84.5% by using Facial Landmark Detection method. Therefore, facial landmarks can be used to identify emotion in face images more accurately.
2022-02-07
Osman, Mohd Zamri, Abidin, Ahmad Firdaus Zainal, Romli, Rahiwan Nazar, Darmawan, Mohd Faaizie.  2021.  Pixel-based Feature for Android Malware Family Classification using Machine Learning Algorithms. 2021 International Conference on Software Engineering Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). :552–555.
‘Malicious software’ or malware has been a serious threat to the security and privacy of all mobile phone users. Due to the popularity of smartphones, primarily Android, this makes them a very viable target for spreading malware. In the past, many solutions have proved ineffective and have resulted in many false positives. Having the ability to identify and classify malware will help prevent them from spreading and evolving. In this paper, we study the effectiveness of the proposed classification of the malware family using a pixel level as features. This study has implemented well-known machine learning and deep learning classifiers such as K-Nearest Neighbours (k-NN), Support Vector Machine (SVM), Naïve Bayes (NB), Decision Tree, and Random Forest. A binary file of 25 malware families is converted into a fixed grayscale image. The grayscale images were then extracted transforming the size 100x100 into a single format into 100000 columns. During this phase, none of the columns are removed as to remain the patterns in each malware family. The experimental results show that our approach achieved 92% accuracy in Random Forest, 88% in SVM, 81% in Decision Tree, 80% in k-NN and 56% in Naïve Bayes classifier. Overall, the pixel-based feature also reveals a promising technique for identifying the family of malware with great accuracy, especially using the Random Forest classifier.
Khetarpal, Anavi, Mallik, Abhishek.  2021.  Visual Malware Classification Using Transfer Learning. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1–5.
The proliferation of malware attacks causes a hindrance to cybersecurity thus, posing a significant threat to our devices. The variety and number of both known as well as unknown malware makes it difficult to detect it. Research suggests that the ramifications of malware are only becoming worse with time and hence malware analysis becomes crucial. This paper proposes a visual malware classification technique to convert malware executables into their visual representations and obtain grayscale images of malicious files. These grayscale images are then used to classify malicious files into their respective malware families by passing them through deep convolutional neural networks (CNN). As part of deep CNN, we use various ImageNet models and compare their performance.
Abdelmonem, Salma, Seddik, Shahd, El-Sayed, Rania, Kaseb, Ahmed S..  2021.  Enhancing Image-Based Malware Classification Using Semi-Supervised Learning. 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :125–128.
Malicious software (malware) creators are constantly mutating malware files in order to avoid detection, resulting in hundreds of millions of new malware every year. Therefore, most malware files are unlabeled due to the time and cost needed to label them manually. This makes it very challenging to perform malware detection, i.e., deciding whether a file is malware or not, and malware classification, i.e., determining the family of the malware. Most solutions use supervised learning (e.g., ResNet and VGG) whose accuracy degrades significantly with the lack of abundance of labeled data. To solve this problem, this paper proposes a semi-supervised learning model for image-based malware classification. In this model, malware files are represented as grayscale images, and semi-supervised learning is carefully selected to handle the plethora of unlabeled data. Our proposed model is an enhanced version of the ∏-model, which makes it more accurate and consistent. Experiments show that our proposed model outperforms the original ∏-model by 4% in accuracy and three other supervised models by 6% in accuracy especially when the ratio of labeled samples is as low as 20%.
Gao, Tan, Li, Xudong, Chen, Wen.  2021.  Co-training For Image-Based Malware Classification. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :568–572.
A malware detection model based on semi-supervised learning is proposed in the paper. Our model includes mainly three parts: malware visualization, feature extraction, and classification. Firstly, the malware visualization converts malware into grayscale images; then the features of the images are extracted to reflect the coding patterns of malware; finally, a collaborative learning model is applied to malware detections using both labeled and unlabeled software samples. The proposed model was evaluated based on two commonly used benchmark datasets. The results demonstrated that compared with traditional methods, our model not only reduced the cost of sample labeling but also improved the detection accuracy through incorporating unlabeled samples into the collaborative learning process, thereby achieved higher classification performance.
2021-12-22
Panda, Akash Kumar, Kosko, Bart.  2021.  Bayesian Pruned Random Rule Foams for XAI. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.
A random rule foam grows and combines several independent fuzzy rule-based systems by randomly sampling input-output data from a trained deep neural classifier. The random rule foam defines an interpretable proxy system for the sampled black-box classifier. The random foam gives the complete Bayesian posterior probabilities over the foam subsystems that contribute to the proxy system's output for a given pattern input. It also gives the Bayesian posterior over the if-then fuzzy rules in each of these constituent foams. The random foam also computes a conditional variance that describes the uncertainty in its predicted output given the random foam's learned rule structure. The mixture structure leads to bootstrap confidence intervals around the output. Using the Bayesian posterior probabilities to prune or discard low-probability sub-foams improves the system's classification accuracy. Simulations used the MNIST image data set of 60,000 gray-scale images of ten hand-written digits. Dropping the lowest-probability foams per input pattern brought the pruned random foam's classification accuracy nearly to that of the neural classifier. Posterior pruning outperformed simple accuracy pruning of a random foam and outperformed a random forest trained on the same neural classifier.
2021-04-08
Boato, G., Dang-Nguyen, D., Natale, F. G. B. De.  2020.  Morphological Filter Detector for Image Forensics Applications. IEEE Access. 8:13549—13560.
Mathematical morphology provides a large set of powerful non-linear image operators, widely used for feature extraction, noise removal or image enhancement. Although morphological filters might be used to remove artifacts produced by image manipulations, both on binary and gray level documents, little effort has been spent towards their forensic identification. In this paper we propose a non-trivial extension of a deterministic approach originally detecting erosion and dilation of binary images. The proposed approach operates on grayscale images and is robust to image compression and other typical attacks. When the image is attacked the method looses its deterministic nature and uses a properly trained SVM classifier, using the original detector as a feature extractor. Extensive tests demonstrate that the proposed method guarantees very high accuracy in filtering detection, providing 100% accuracy in discriminating the presence and the type of morphological filter in raw images of three different datasets. The achieved accuracy is also good after JPEG compression, equal or above 76.8% on all datasets for quality factors above 80. The proposed approach is also able to determine the adopted structuring element for moderate compression factors. Finally, it is robust against noise addition and it can distinguish morphological filter from other filters.
2021-02-08
Chiang, M., Lau, S..  2011.  Automatic multiple faces tracking and detection using improved edge detector algorithm. 2011 7th International Conference on Information Technology in Asia. :1—5.

The automatic face tracking and detection has been one of the fastest developing areas due to its wide range of application, security and surveillance application in particular. It has been one of the most interest subjects, which suppose but yet to be wholly explored in various research areas due to various distinctive factors: varying ethnic groups, sizes, orientations, poses, occlusions and lighting conditions. The focus of this paper is to propose an improve algorithm to speed up the face tracking and detection process with the simple and efficient proposed novel edge detector to reject the non-face-likes regions, hence reduce the false detection rate in an automatic face tracking and detection in still images with multiple faces for facial expression system. The correct rates of 95.9% on the Haar face detection and proposed novel edge detector, which is higher 6.1% than the primitive integration of Haar and canny edge detector.

Wang Xiao, Mi Hong, Wang Wei.  2010.  Inner edge detection of PET bottle opening based on the Balloon Snake. 2010 2nd International Conference on Advanced Computer Control. 4:56—59.

Edge detection of bottle opening is a primary section to the machine vision based bottle opening detection system. This paper, taking advantage of the Balloon Snake, on the PET (Polyethylene Terephthalate) images sampled at rotating bottle-blowing machine producing pipelines, extracts the opening. It first uses the grayscale weighting average method to calculate the centroid as the initial position of Snake and then based on the energy minimal theory, it extracts the opening. Experiments show that compared with the conventional edge detection and center location methods, Balloon Snake is robust and can easily step over the weak noise points. Edge extracted thorough Balloon Snake is more integral and continuous which provides a guarantee to correctly judge the opening.

2020-10-29
Roseline, S. Abijah, Sasisri, A. D., Geetha, S., Balasubramanian, C..  2019.  Towards Efficient Malware Detection and Classification using Multilayered Random Forest Ensemble Technique. 2019 International Carnahan Conference on Security Technology (ICCST). :1—6.

The exponential growth rate of malware causes significant security concern in this digital era to computer users, private and government organizations. Traditional malware detection methods employ static and dynamic analysis, which are ineffective in identifying unknown malware. Malware authors develop new malware by using polymorphic and evasion techniques on existing malware and escape detection. Newly arriving malware are variants of existing malware and their patterns can be analyzed using the vision-based method. Malware patterns are visualized as images and their features are characterized. The alternative generation of class vectors and feature vectors using ensemble forests in multiple sequential layers is performed for classifying malware. This paper proposes a hybrid stacked multilayered ensembling approach which is robust and efficient than deep learning models. The proposed model outperforms the machine learning and deep learning models with an accuracy of 98.91%. The proposed system works well for small-scale and large-scale data since its adaptive nature of setting parameters (number of sequential levels) automatically. It is computationally efficient in terms of resources and time. The method uses very fewer hyper-parameters compared to deep neural networks.

Lo, Wai Weng, Yang, Xu, Wang, Yapeng.  2019.  An Xception Convolutional Neural Network for Malware Classification with Transfer Learning. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—5.

In this work, we applied a deep Convolutional Neural Network (CNN) with Xception model to perform malware image classification. The Xception model is a recently developed special CNN architecture that is more powerful with less over- fitting problems than the current popular CNN models such as VGG16. However only a few use cases of the Xception model can be found in literature, and it has never been used to solve the malware classification problem. The performance of our approach was compared with other methods including KNN, SVM, VGG16 etc. The experiments on two datasets (Malimg and Microsoft Malware Dataset) demonstrated that the Xception model can achieve the highest training accuracy than all other approaches including the champion approach, and highest validation accuracy than all other approaches including VGG16 model which are using image-based malware classification (except the champion solution as this information was not provided). Additionally, we proposed a novel ensemble model to combine the predictions from .bytes files and .asm files, showing that a lower logloss can be achieved. Although the champion on the Microsoft Malware Dataset achieved a bit lower logloss, our approach does not require any features engineering, making it more effective to adapt to any future evolution in malware, and very much less time consuming than the champion's solution.

2020-10-26
Li, Huhua, Zhan, Dongyang, Liu, Tianrui, Ye, Lin.  2019.  Using Deep-Learning-Based Memory Analysis for Malware Detection in Cloud. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :1–6.
Malware is one of the biggest threats in cloud computing. Malware running inside virtual machines or containers could steal critical information or continue to attack other cloud nodes. To detect malware in cloud, especially zero-day malware, signature-and machine-learning-based approaches are proposed to analyze the execution binary. However, malicious binary files may not permanently be stored in the file system of virtual machine or container, periodically scanner may not find the target files. Dynamic analysis approach usually introduce run-time overhead to virtual machines, which is not widely used in cloud. To solve these problems, we propose a memory analysis approach to detect malware, employing the deep learning technology. The system analyzes the memory image periodically during malware execution, which will not introduce run-time overhead. We first extract the memory snapshot from running virtual machines or containers. Then, the snapshot is converted to a grayscale image. Finally, we employ CNN to detect malware. In the learning phase, malicious and benign software are trained. In the testing phase, we test our system with real-world malwares.
2019-06-24
Naeem, H., Guo, B., Naeem, M. R..  2018.  A light-weight malware static visual analysis for IoT infrastructure. 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). :240–244.

Recently a huge trend on the internet of things (IoT) and an exponential increase in automated tools are helping malware producers to target IoT devices. The traditional security solutions against malware are infeasible due to low computing power for large-scale data in IoT environment. The number of malware and their variants are increasing due to continuous malware attacks. Consequently, the performance improvement in malware analysis is critical requirement to stop rapid expansion of malicious attacks in IoT environment. To solve this problem, the paper proposed a novel framework for classifying malware in IoT environment. To achieve flne-grained malware classification in suggested framework, the malware image classification system (MICS) is designed for representing malware image globally and locally. MICS first converts the suspicious program into the gray-scale image and then captures hybrid local and global malware features to perform malware family classification. Preliminary experimental outcomes of MICS are quite promising with 97.4% classification accuracy on 9342 windows suspicious programs of 25 families. The experimental results indicate that proposed framework is quite capable to process large-scale IoT malware.

2019-06-10
Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D. B., Wang, Y., Iqbal, F..  2018.  Malware Classification with Deep Convolutional Neural Networks. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1-5.

In this paper, we propose a deep learning framework for malware classification. There has been a huge increase in the volume of malware in recent years which poses a serious security threat to financial institutions, businesses and individuals. In order to combat the proliferation of malware, new strategies are essential to quickly identify and classify malware samples so that their behavior can be analyzed. Machine learning approaches are becoming popular for classifying malware, however, most of the existing machine learning methods for malware classification use shallow learning algorithms (e.g. SVM). Recently, Convolutional Neural Networks (CNN), a deep learning approach, have shown superior performance compared to traditional learning algorithms, especially in tasks such as image classification. Motivated by this success, we propose a CNN-based architecture to classify malware samples. We convert malware binaries to grayscale images and subsequently train a CNN for classification. Experiments on two challenging malware classification datasets, Malimg and Microsoft malware, demonstrate that our method achieves better than the state-of-the-art performance. The proposed method achieves 98.52% and 99.97% accuracy on the Malimg and Microsoft datasets respectively.

Kornish, D., Geary, J., Sansing, V., Ezekiel, S., Pearlstein, L., Njilla, L..  2018.  Malware Classification Using Deep Convolutional Neural Networks. 2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). :1-6.

In recent years, deep convolution neural networks (DCNNs) have won many contests in machine learning, object detection, and pattern recognition. Furthermore, deep learning techniques achieved exceptional performance in image classification, reaching accuracy levels beyond human capability. Malware variants from similar categories often contain similarities due to code reuse. Converting malware samples into images can cause these patterns to manifest as image features, which can be exploited for DCNN classification. Techniques for converting malware binaries into images for visualization and classification have been reported in the literature, and while these methods do reach a high level of classification accuracy on training datasets, they tend to be vulnerable to overfitting and perform poorly on previously unseen samples. In this paper, we explore and document a variety of techniques for representing malware binaries as images with the goal of discovering a format best suited for deep learning. We implement a database for malware binaries from several families, stored in hexadecimal format. These malware samples are converted into images using various approaches and are used to train a neural network to recognize visual patterns in the input and classify malware based on the feature vectors. Each image type is assessed using a variety of learning models, such as transfer learning with existing DCNN architectures and feature extraction for support vector machine classifier training. Each technique is evaluated in terms of classification accuracy, result consistency, and time per trial. Our preliminary results indicate that improved image representation has the potential to enable more effective classification of new malware.

2019-02-22
Liao, X., Yu, Y., Li, B., Li, Z., Qin, Z..  2019.  A New Payload Partition Strategy in Color Image Steganography. IEEE Transactions on Circuits and Systems for Video Technology. :1-1.

In traditional steganographic schemes, RGB three channels payloads are assigned equally in a true color image. In fact, the security of color image steganography relates not only to data-embedding algorithms but also to different payload partition. How to exploit inter-channel correlations to allocate payload for performance enhancement is still an open issue in color image steganography. In this paper, a novel channel-dependent payload partition strategy based on amplifying channel modification probabilities is proposed, so as to adaptively assign the embedding capacity among RGB channels. The modification probabilities of three corresponding pixels in RGB channels are simultaneously increased, and thus the embedding impacts could be clustered, in order to improve the empirical steganographic security against the channel co-occurrences detection. Experimental results show that the new color image steganographic schemes incorporated with the proposed strategy can effectively make the embedding changes concentrated mainly in textured regions, and achieve better performance on resisting the modern color image steganalysis.

2018-11-19
Chen, Y., Lai, Y., Liu, Y..  2017.  Transforming Photos to Comics Using Convolutional Neural Networks. 2017 IEEE International Conference on Image Processing (ICIP). :2010–2014.

In this paper, inspired by Gatys's recent work, we propose a novel approach that transforms photos to comics using deep convolutional neural networks (CNNs). While Gatys's method that uses a pre-trained VGG network generally works well for transferring artistic styles such as painting from a style image to a content image, for more minimalist styles such as comics, the method often fails to produce satisfactory results. To address this, we further introduce a dedicated comic style CNN, which is trained for classifying comic images and photos. This new network is effective in capturing various comic styles and thus helps to produce better comic stylization results. Even with a grayscale style image, Gatys's method can still produce colored output, which is not desirable for comics. We develop a modified optimization framework such that a grayscale image is guaranteed to be synthesized. To avoid converging to poor local minima, we further initialize the output image using grayscale version of the content image. Various examples show that our method synthesizes better comic images than the state-of-the-art method.

2017-02-23
S. Goyal, M. Ramaiya, D. Dubey.  2015.  "Improved Detection of 1-2-4 LSB Steganography and RSA Cryptography in Color and Grayscale Images". 2015 International Conference on Computational Intelligence and Communication Networks (CICN). :1120-1124.

Steganography is the art of the hidden data in such a way that it detection of hidden knowledge prevents. As the necessity of security and privacy increases, the need of the hiding secret data is ongoing. In this paper proposed an enhanced detection of the 1-2-4 LSB steganography and RSA cryptography in Gray Scale and Color images. For color images, we apply 1-2-4 LSB on component of the RGB, then encrypt information applying RSA technique. For Gray Images, we use LSB to then encrypt information and also detect edges of gray image. In the experimental outcomes, calculate PSNR and MSE. We calculate peak signal noise ratio for quality and brightness. This method makes sure that the information has been encrypted before hiding it into an input image. If in any case the cipher text got revealed from the input image, the middle person other than receiver can't access the information as it is in encrypted form.