Biblio
Peer to Peer (P2P) is a dynamic and self-organized technology, popularly used in File sharing applications to achieve better performance and avoids single point of failure. The popularity of this network has attracted many attackers framing different attacks including Sybil attack, Routing Table Insertion attack (RTI) and Free Riding. Many mitigation methods are also proposed to defend or reduce the impact of such attacks. However, most of those approaches are protocol specific. In this work, we propose a Blockchain based security framework for P2P network to address such security issues. which can be tailored to any P2P file-sharing system.
Users have accumulated years of personal data in cloud storage, creating potential privacy and security risks. This agglomeration includes files retained or shared with others simply out of momentum, rather than intention. We presented 100 online-survey participants with a stratified sample of 10 files currently stored in their own Dropbox or Google Drive accounts. We asked about the origin of each file, whether the participant remembered that file was stored there, and, when applicable, about that file's sharing status. We also recorded participants' preferences moving forward for keeping, deleting, or encrypting those files, as well as adjusting sharing settings. Participants had forgotten that half of the files they saw were in the cloud. Overall, 83% of participants wanted to delete at least one file they saw, while 13% wanted to unshare at least one file. Our combined results suggest directions for retrospective cloud data management.
Easy sharing files in public network that is intended only for certain people often resulting in the leaking of sharing folders or files and able to be read also by others who are not authorized. Secure data is one of the most challenging issues in data sharing systems. Here, Ciphertext-Policy Attribute-Based Encryption (CP-ABE) is a reliable asymmetric encryption mechanism which deals with secure data and used for data encryption. It is not necessary encrypted to one particular user, but recipient is only able to decrypt if and only if the attribute set of his private key match with the specified policy in the ciphertext. In this paper, we propose a secure data exchange using CP-ABE with authentication feature. The data is attribute-based encrypted to satisfy confidentiality feature and authenticated to satisfy data authentication simultaneously.