Biblio
The concept of Virtualized Network Functions (VNFs) aims to move Network Functions (NFs) out of dedicated hardware devices into software that runs on commodity hardware. A single NF consists of multiple VNF instances, usually running on virtual machines in a cloud infrastructure. The elastic management of an NF refers to load management across the VNF instances and the autonomic scaling of the number of VNF instances as the load on the NF changes. In this paper, we present EL-SEC, an autonomic framework to elastically manage security NFs on a virtualized infrastructure. As a use case, we deploy the Snort Intrusion Detection System as the NF on the GENI testbed. Concepts from control theory are used to create an Elastic Manager, which implements various controllers - in this paper, Proportional Integral (PI) and Proportional Integral Derivative (PID) - to direct traffic across the VNF Snort instances by monitoring the current load. RINA (a clean-slate Recursive InterNetwork Architecture) is used to build a distributed application that monitors load and collects Snort alerts, which are processed by the Elastic Manager and an Attack Analyzer, respectively. Software Defined Networking (SDN) is used to steer traffic through the VNF instances, and to block attack traffic. Our results show that virtualized security NFs can be easily deployed using our EL-SEC framework. With the help of real-time graphs, we show that PI and PID controllers can be used to easily scale the system, which leads to quicker detection of attacks.
Cloud data centers are critical infrastructures to deliver cloud services. Although security and performance of cloud data centers have been well studied in the past, their networking aspects are overlooked. Current network infrastructures in cloud data centers limit the ability of cloud provider to offer guaranteed cloud network resources to users. In order to ensure security and performance requirements as defined in the service level agreement (SLA) between cloud user and provider, cloud providers need the ability to provision network resources dynamically and on the fly. The main challenge for cloud provider in utilizing network resource can be addressed by provisioning virtual networks that support information centric services by separating the control plane from the cloud infrastructure. In this paper, we propose an sdn based information centric cloud framework to provision network resources in order to support elastic demands of cloud applications depending on SLA requirements. The framework decouples the control plane and data plane wherein the conceptually centralized control plane controls and manages the fully distributed data plane. It computes the path to ensure security and performance of the network. We report initial experiment on average round-trip delay between consumers and producers.
To overcome the current cybersecurity challenges of protecting our cyberspace and applications, we present an innovative cloud-based architecture to offer resilient Dynamic Data Driven Application Systems (DDDAS) as a cloud service that we refer to as resilient DDDAS as a Service (rDaaS). This architecture integrates Service Oriented Architecture (SOA) and DDDAS paradigms to offer the next generation of resilient and agile DDDAS-based cyber applications, particularly convenient for critical applications such as Battle and Crisis Management applications. Using the cloud infrastructure to offer resilient DDDAS routines and applications, large scale DDDAS applications can be developed by users from anywhere and by using any device (mobile or stationary) with the Internet connectivity. The rDaaS provides transformative capabilities to achieve superior situation awareness (i.e., assessment, visualization, and understanding), mission planning and execution, and resilient operations.
Attacks on airport information network services in the form of Denial of Service (DoS), Distributed DoS (DDoS), and hijacking are the most effective schemes mostly explored by cyber terrorists in the aviation industry running Mission Critical Services (MCSs). This work presents a case for Airport Information Resource Management Systems (AIRMS) which is a cloud based platform proposed for the Nigerian aviation industry. Granting that AIRMS is susceptible to DoS attacks, there is need to develop a robust counter security network model aimed at pre-empting such attacks and subsequently mitigating the vulnerability in such networks. Existing works in literature regarding cyber security DoS and other schemes have not explored embedded Stateful Packet Inspection (SPI) based on OpenFlow Application Centric Infrastructure (OACI) for securing critical network assets. As such, SPI-OACI was proposed to address the challenge of Vulnerability Bandwidth Depletion DDoS Attacks (VBDDA). A characterization of the Cisco 9000 router firewall as an embedded network device with support for Virtual DDoS protection was carried out in the AIRMS threat mitigation design. Afterwards, the mitigation procedure and the initial phase of the design with Riverbed modeler software were realized. For the security Quality of Service (QoS) profiling, the system response metrics (i.e. SPI-OACI delay, throughput and utilization) in cloud based network were analyzed only for normal traffic flows. The work concludes by offering practical suggestion for securing similar enterprise management systems running on cloud infrastructure against cyber terrorists.
Many cloud security complexities can be concerned as a result of its open system architecture. One of these complexities is multi-tenancy security issue. This paper discusses and addresses the most common public cloud security complexities focusing on Multi-Tenancy security issue. Multi-tenancy is one of the most important security challenges faced by public cloud services providers. Therefore, this paper presents a secure multi-tenancy architecture using authorization model Based on AAAS protocol. By utilizing cloud infrastructure, access control can be provided to various cloud information and services by our suggested authorization system. Each business can offer several cloud services. These cloud services can cooperate with other services which can be related to the same organization or different one. Moreover, these cooperation agreements are supported by our suggested system.