Biblio
The smart grid is a complex cyber-physical system (CPS) that poses challenges related to scale, integration, interoperability, processes, governance, and human elements. The US National Institute of Standards and Technology (NIST) and its government, university and industry collaborators, developed an approach, called CPS Framework, to reasoning about CPS across multiple levels of concern and competency, including trustworthiness, privacy, reliability, and regulatory. The approach uses ontology and reasoning techniques to achieve a greater understanding of the interdependencies among the elements of the CPS Framework model applied to use cases. This paper demonstrates that the approach extends naturally to automated and manual decision-making for smart grids: we apply it to smart grid use cases, and illustrate how it can be used to analyze grid topologies and address concerns about the smart grid. Smart grid stakeholders, whose decision making may be assisted by this approach, include planners, designers and operators.
Mission assurance requires effective, near-real time defensive cyber operations to appropriately respond to cyber attacks, without having a significant impact on operations. The ability to rapidly compute, prioritize and execute network-based courses of action (CoAs) relies on accurate situational awareness and mission-context information. Although diverse solutions exist for automatically collecting and analysing infrastructure data, few deliver automated analysis and implementation of network-based CoAs in the context of the ongoing mission. In addition, such processes can be operatorintensive and available tools tend to be specific to a set of common data sources and network responses. To address these issues, Defence Research and Development Canada (DRDC) is leading the development of the Automated Computer Network Defence (ARMOUR) technology demonstrator and cyber defence science and technology (S&T) platform. ARMOUR integrates new and existing off-the-shelf capabilities to provide enhanced decision support and to automate many of the tasks currently executed manually by network operators. This paper describes the cyber defence integration framework, situational awareness, and automated mission-oriented decision support that ARMOUR provides.
In the Internet-of-Things (IoT), users might share part of their data with different IoT prosumers, which offer applications or services. Within this open environment, the existence of an adversary introduces security risks. These can be related, for instance, to the theft of user data, and they vary depending on the security controls that each IoT prosumer has put in place. To minimize such risks, users might seek an “optimal” set of prosumers. However, assuming the adversary has the same information as the users about the existing security measures, he can then devise which prosumers will be preferable (e.g., with the highest security levels) and attack them more intensively. This paper proposes a decision-support approach that minimizes security risks in the above scenario. We propose a non-cooperative, two-player game entitled Prosumers Selection Game (PSG). The Nash Equilibria of PSG determine subsets of prosumers that optimize users' payoffs. We refer to any game solution as the Nash Prosumers Selection (NPS), which is a vector of probabilities over subsets of prosumers. We show that when using NPS, a user faces the least expected damages. Additionally, we show that according to NPS every prosumer, even the least secure one, is selected with some non-zero probability. We have also performed simulations to compare NPS against two different heuristic selection algorithms. The former is proven to be approximately 38% more effective in terms of security-risk mitigation.