Biblio
The performance-driven design of SDN architectures leaves many security vulnerabilities, a notable one being the communication bottleneck between the controller and the switches. Functioning as a cache between the controller and the switches, the flow table mitigates this bottleneck by caching flow rules received from the controller at each switch, but is very limited in size due to the high cost and power consumption of the underlying storage medium. It thus presents an easy target for attacks. Observing that many existing defenses are based on simplistic attack models, we develop a model of intelligent attacks that exploit specific cache-like behaviors of the flow table to infer its internal configuration and state, and then design attack parameters accordingly. Our evaluations show that such attacks can accurately expose the internal parameters of the target flow table and cause measurable damage with the minimum effort.
The power system forms the backbone of a modern society, and its security is of paramount importance to nation's economy. However, the power system is vulnerable to intelligent attacks by attackers who have enough knowledge of how the power system is operated, monitored and controlled. This paper proposes a game theoretic approach to explore and evaluate strategies for the defender to protect the power systems against such intelligent attacks. First, a risk assessment is presented to quantify the physical impacts inflicted by attacks. Based upon the results of the risk assessment, this paper represents the interactions between the attacker and the defender by extending the current zero-sum game model to more generalized game models for diverse assumptions concerning the attacker's motivation. The attacker and defender's equilibrium strategies are attained by solving these game models. In addition, a numerical illustration is demonstrated to warrant the theoretical outcomes.