Biblio
The performance-driven design of SDN architectures leaves many security vulnerabilities, a notable one being the communication bottleneck between the controller and the switches. Functioning as a cache between the controller and the switches, the flow table mitigates this bottleneck by caching flow rules received from the controller at each switch, but is very limited in size due to the high cost and power consumption of the underlying storage medium. It thus presents an easy target for attacks. Observing that many existing defenses are based on simplistic attack models, we develop a model of intelligent attacks that exploit specific cache-like behaviors of the flow table to infer its internal configuration and state, and then design attack parameters accordingly. Our evaluations show that such attacks can accurately expose the internal parameters of the target flow table and cause measurable damage with the minimum effort.
Code reuse techniques can circumvent existing security measures. For example, attacks such as Return Oriented Programming (ROP) use fragments of the existing code base to create an attack. Since this code is already in the system, the Data Execution Prevention methods cannot prevent the execution of this reorganised code. Existing software-based Control Flow Integrity can prevent this attack, but the overhead is enormous. Most of the improved methods utilise reduced granularity in exchange for a small performance overhead. Hardware-based detection also faces the same performance overhead and accuracy issues. Benefit from HPC's large-area loading on modern CPU chips, we propose a detection method based on the monitoring of hardware performance counters, which is a lightweight system-level detection for malicious code execution to solve the restrictions of other software and hardware security measures, and is not as complicated as Control Flow Integrity.