Biblio
This paper attempts to introduce the enhanced SHA-1 algorithm which features a simple quadratic function that will control the selection of primitive function and constant used per round of SHA-1. The message digest for this enhancement is designed for 512 hashed value that will answer the possible occurrence of hash collisions. Moreover, this features the architecture of 8 registers of A, B, C, D, E, F, G, and H which consists of 64 bits out of the total 512 bits. The testing of frequency for Q15 and Q0 will prove that the selection of primitive function and the constant used are not equally distributed. Implementation of extended bits for hash message will provide additional resources for dictionary attacks and the extension of its hash outputs will provide an extended time for providing a permutation of 512 hash bits.
Blum-Blum-Shub (BBS) is a less complex pseudorandom number generator (PRNG) that requires very large modulus and a squaring operation for the generation of each bit, which makes it computationally heavy and slow. On the other hand, the concept of elliptic curve (EC) point operations has been extended to PRNGs that prove to have good randomness properties and reduced latency, but exhibit dependence on the secrecy of point P. Given these pros and cons, this paper proposes a new BBS-ECPRNG approach such that the modulus is the product of two elliptic curve points, both primes of length, and the number of bits extracted per iteration is by binary fraction. We evaluate the algorithm performance by generating 1000 distinct sequences of 106bits each. The results were analyzed based on the overall performance of the sequences using the NIST standard statistical test suite. The average performance of the sequences was observed to be above the minimum confidence level of 99.7 percent and successfully passed all the statistical properties of randomness tests.
This paper introduces SONA (Spatiotemporal system Organized for Natural Analysis), a tabletop and tangible controller system for exploring geotagged information, and more specifically, CCTV. SONA's goal is to support a more natural method of interacting with data. Our new interactions are placed in the context of a physical security environment, closed circuit television (CCTV). We present a three-layered detail on demand set of view filters for CCTV feeds on a digital map. These filters are controlled with a novel tangible device for direct interaction. We validate SONA's tangible controller approach with a user study comparing SONA with the existing CCTV multi-screen method. The results of the study show that SONA's tangible interaction method is superior to the multi-screen approach, both in terms of quantitative results, and is preferred by users.
Crowd management in urban settings has mostly relied on either classical, non-automated mechanisms or spontaneous notifications/alerts through social networks. Such management techniques are heavily marred by lack of comprehensive control, especially in terms of averting risks in a manner that ensures crowd safety and enables prompt emergency response. In this paper, we propose a Markov Decision Process Scheme MDP to realize a smart infrastructure that is directly aimed at crowd management. A key emphasis of the scheme is a robust and reliable scalability that provides sufficient flexibility to manage a mixed crowd (i.e., pedestrian, cyclers, manned vehicles and unmanned vehicles). The infrastructure also spans various population settings (e.g., roads, buildings, game arenas, etc.). To realize a reliable and scalable crowd management scheme, the classical MDP is decomposed into Local MDPs with smaller action-state spaces. Preliminarily results show that the MDP decomposition can reduce the system global cost and facilitate fast convergence to local near-optimal solution for each L-MDP.
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar
The cuttlefish optimization algorithm is a new combinatorial optimization algorithm in the family of metaheuristics, applied in the continuous domain, and which provides mechanisms for local and global research. This paper presents a new adaptation of this algorithm in the discrete case, solving the famous travelling salesman problem, which is one of the discrete combinatorial optimization problems. This new adaptation proposes a reformulation of the equations to generate solutions depending a different algorithm cases. The experimental results of the proposed algorithm on instances of TSPLib library are compared with the other methods, show the efficiency and quality of this adaptation.
This study presents spatial analysis of Dengue Fever (DF) outbreak using Geographic Information System (GIS) in the state of Selangor, Malaysia. DF is an Aedes mosquito-borne disease. The aim of the study is to map the spread of DF outbreak in Selangor by producing a risk map while the objective is to identify high risk areas of DF by producing a risk map using GIS tools. The data used was DF dengue cases in 2012 obtained from Ministry of Health, Malaysia. The analysis was carried out using Moran's I, Average Nearest Neighbor (ANN), Kernel Density Estimation (KDE) and buffer analysis using GIS. From the Moran's I analysis, the distribution pattern of DF in Selangor clustered. From the ANN analysis, the result shows a dispersed pattern where the ratio is more than 1. The third analysis was based on KDE to locate the hot spot location. The result shows that some districts are classified as high risk areas which are Ampang, Damansara, Kapar, Kajang, Klang, Semenyih, Sungai Buloh and Petaling. The buffer analysis, area ranges between 200m. to 500m. above sea level shows a clustered pattern where the highest frequent cases in the year are at the same location. It was proven that the analysis based on the spatial statistic, spatial interpolation, and buffer analysis can be used as a method in controlling and locating the DF affection with the aid of GIS.