Biblio
Large numbers of smart connected devices, also named as the Internet of Things (IoT), are permeating our environments (homes, factories, cars, and also our body - with wearable devices) to collect data and act on the insight derived. Ensuring software integrity (including OS, apps, and configurations) on such smart devices is then essential to guarantee both privacy and safety. A key mechanism to protect the software integrity of these devices is remote attestation: A process that allows a remote verifier to validate the integrity of the software of a device. This process usually makes use of a signed hash value of the actual device's software, generated by dedicated hardware. While individual device attestation is a well-established technique, to date integrity verification of a very large number of devices remains an open problem, due to scalability issues. In this paper, we present SANA, the first secure and scalable protocol for efficient attestation of large sets of devices that works under realistic assumptions. SANA relies on a novel signature scheme to allow anyone to publicly verify a collective attestation in constant time and space, for virtually an unlimited number of devices. We substantially improve existing swarm attestation schemes by supporting a realistic trust model where: (1) only the targeted devices are required to implement attestation; (2) compromising any device does not harm others; and (3) all aggregators can be untrusted. We implemented SANA and demonstrated its efficiency on tiny sensor devices. Furthermore, we simulated SANA at large scale, to assess its scalability. Our results show that SANA can provide efficient attestation of networks of 1,000,000 devices, in only 2.5 seconds.
As embedded devices (under the guise of "smart-whatever") rapidly proliferate into many domains, they become attractive targets for malware. Protecting them from software and physical attacks becomes both important and challenging. Remote attestation is a basic tool for mitigating such attacks. It allows a trusted party (verifier) to remotely assess software integrity of a remote, untrusted, and possibly compromised, embedded device (prover). Prior remote attestation methods focus on software (malware) attacks in a one-verifier/one-prover setting. Physical attacks on provers are generally ruled out as being either unrealistic or impossible to mitigate. In this paper, we argue that physical attacks must be considered, particularly, in the context of many provers, e.g., a network, of devices. As- suming that physical attacks require capture and subsequent temporary disablement of the victim device(s), we propose DARPA, a light-weight protocol that takes advantage of absence detection to identify suspected devices. DARPA is resilient against a very strong adversary and imposes minimal additional hardware requirements. We justify and identify DARPA's design goals and evaluate its security and costs.