Biblio
The objective of this paper is to explore the current notions of systems and “System of Systems” and establish the case for quantitative characterization of their structural, behavioural and contextual facets that will pave the way for further formal development (mathematical formulation). This is partly driven by stakeholder needs and perspectives and also in response to the necessity to attribute and communicate the properties of a system more succinctly, meaningfully and efficiently. The systematic quantitative characterization framework proposed will endeavor to extend the notion of emergence that allows the definition of appropriate metrics in the context of a number of systems ontologies. The general characteristic and information content of the ontologies relevant to system and system of system will be specified but not developed at this stage. The current supra-system, system and sub-system hierarchy is also explored for the formalisation of a standard notation in order to depict a relative scale and order and avoid the seemingly arbitrary attributions.
Mobile users access location services from a location based server. While doing so, the user's privacy is at risk. The server has access to all details about the user. Example the recently visited places, the type of information he accesses. We have presented synergetic technique to safeguard location privacy of users accessing location-based services via mobile devices. Mobile devices have a capability to form ad-hoc networks to hide a user's identity and position. The user who requires the service is the query originator and who requests the service on behalf of query originator is the query sender. The query originator selects the query sender with equal probability which leads to anonymity in the network. The location revealed to the location service provider is a rectangle instead of exact co-ordinate. In this paper we have simulated the mobile network and shown the results for cloaking area sizes and performance against the variation in the density of users.
In this article, researcher collaboration patterns and research topics on Intelligence and Security Informatics (ISI) are investigated using social network analysis approaches. The collaboration networks exhibit scale-free property and small-world effect. From these networks, the authors obtain the key researchers, institutions, and three important topics.
This article addresses trust in computer systems as a social phenomenon, which depends on the type of relationship that is established through the computer, or with other individuals. It starts by theoretically contextualizing trust, and then situates trust in the field of computer science. Then, describes the proposed model, which builds on what one perceives to be trustworthy and is influenced by a number of factors such as the history of participation and user's perceptions. It ends by situating the proposed model as a key contribution for leveraging trustful interactions and ends by proposing it used to serve as a complement to foster user's trust needs in what concerns Human-computer Iteration or Computermediated Interactions.
Today, beyond a legitimate usage, the numerous advantages of cloud computing are exploited by attackers, and Botnets supporting DDoS attacks are among the greatest beneficiaries of this malicious use. Such a phenomena is a major issue since it strongly increases the power of distributed massive attacks while involving the responsibility of cloud service providers that do not own appropriate solutions. In this paper, we present an original approach that enables a source-based de- tection of UDP-flood DDoS attacks based on a distributed system behavior analysis. Based on a principal component analysis, our contribution consists in: (1) defining the involvement of system metrics in a botcoud's behavior, (2) showing the invariability of the factorial space that defines a botcloud activity and (3) among several legitimate activities, using this factorial space to enable a botcloud detection.
We consider several challenging problems in complex networks (communication, control, social, economic, biological, hybrid) as problems in cooperative multi-agent systems. We describe a general model for cooperative multi-agent systems that involves several interacting dynamic multigraphs and identify three fundamental research challenges underlying these systems from a network science perspective. We show that the framework of constrained coalitional network games captures in a fundamental way the basic tradeoff of benefits vs. cost of collaboration, in multi-agent systems, and demonstrate that it can explain network formation and the emergence or not of collaboration. Multi-metric problems in such networks are analyzed via a novel multiple partially ordered semirings approach. We investigate the interrelationship between the collaboration and communication multigraphs in cooperative swarms and the role of the communication topology, among the collaborating agents, in improving the performance of distributed task execution. Expander graphs emerge as efficient communication topologies for collaborative control. We relate these models and approaches to statistical physics.