Biblio
In this paper, we consider side-channel mechanisms, specifically using smart device ambient light sensors, to capture information about user computing activity. We distinguish keyboard keystrokes using only the ambient light sensor readings from a smart watch worn on the user's non-dominant hand. Additionally, we investigate the feasibility of capturing screen emanations for determining user browser usage patterns. The experimental results expose privacy and security risks, as well as the potential for new mobile user interfaces and applications.
Cameras have become nearly ubiquitous with the rise of smartphones and laptops. New wearable devices, such as Google Glass, focus directly on using live video data to enable augmented reality and contextually enabled services. However, granting applications full access to video data exposes more information than is necessary for their functionality, introducing privacy risks. We propose a privilege-separation architecture for visual recognizer applications that encourages modularization and least privilege–-separating the recognizer logic, sandboxing it to restrict filesystem and network access, and restricting what it can extract from the raw video data. We designed and implemented a prototype that separates the recognizer and application modules and evaluated our architecture on a set of 17 computer-vision applications. Our experiments show that our prototype incurs low overhead for each of these applications, reduces some of the privacy risks associated with these applications, and in some cases can actually increase the performance due to increased parallelism and concurrency.
Smartwatches, with motion sensors, are becoming a common utility for users. With the increasing popularity of practical wearable computers, and in particular smartwatches, the security risks linked with sensors on board these devices have yet to be fully explored. Recent research literature has demonstrated the capability of using a smartphone's own accelerometer and gyroscope to infer tap locations; this paper expands on this work to demonstrate a method for inferring smartphone PINs through the analysis of smartwatch motion sensors. This study determines the feasibility and accuracy of inferring user keystrokes on a smartphone through a smartwatch worn by the user. Specifically, we show that with malware accessing only the smartwatch's motion sensors, it is possible to recognize user activity and specific numeric keypad entries. In a controlled scenario, we achieve results no less than 41% and up to 92% accurate for PIN prediction within 5 guesses.
This paper explores experiences with ring and bracelet activity tracker form factors. During the first week of a 2-week field study participants (n=6) wore non-functional mock-ups of ring and bracelet wellness trackers, and provided feedback on their experiences. During the second week, participants used a commercial wellness tracking ring, which collected physical exercise and sleep data and visualized it in a mobile application. Our salient findings based on 196 user diary entries suggest, that the ring form factor is considered beautiful, aesthetic and contributing to the wearer's image. However, the bracelet form factor is more practical for active lifestyle, and preferred in situations where the hands are performing tasks requiring gripping objects, such as sport activities, cleaning the car, cooking and washing dishes. Users strongly identified the ring form factor as jewellery that is intended to be seen, whereas bracelets were considered hidden and inconspicuous elements of the user's ensemble.