Biblio
Blockchain may have a potential to prove its value for the new US FDA regulatory requirements defined in the Drug Supply Chain Security Act (DSCSA) as innovative solutions are needed to support the highly complex pharmaceutical industry supply chain as it seeks to comply. In this paper, we examine how blockchain can be applied to meet with the security compliance requirement for the pharmaceutical supply chain. We explore the online playground of Hyperledger Composer, a set of tools for building blockchain business networks, to model the data and access control rules for the drug supply chain. Our experiment shows that this solution can provide a prototyping opportunity for compliance checking with certain limitations.
In rapid continuous software development, time- and cost-effective prototyping techniques are beneficial through enabling software designers to quickly explore and evaluate different design concepts. Regarding low-fidelity prototyping for augmented reality (AR) applications, software designers are so far restricted to non-digital prototypes, which enable the visualization of first design concepts, but can be laborious in capturing interactivity. The lack of empirical values and standards for designing user interactions in AR-software leads to a particular need for applying end-user feedback to software refinement. In this paper we present the concept of a tool for rapid digital prototyping for augmented reality applications, enabling software designers to rapidly design augmented reality prototypes, without requiring programming skills. The prototyping tool focuses on modeling multimodal interactions, especially regarding the interaction with physical objects, as well as performing user-based studies to integrate valuable end-user feedback into the refinement of software aspects.
This paper explores the opportunities for incorporating shape changing properties into everyday home appliances. Throughout a design research approach the vacuum cleaner is used as a design case with the overall aim of enhancing the user experience by transforming the appliance into a sensing object. Three fully functional prototypes were developed in order to illustrate how shape change can fit into the context of our homes. The shape changing functionalities are: 1) a digital power button that supports dynamic affordances, 2) an analog handle that mediates the amount of dust particles through haptic feedback and 3) a body that behaves in a lifelike manner dependent on the user treatment. We report the development and implementation of the functional prototypes as well as technical limitations and initial user reactions on the prototypes.