Biblio
Cloud computing has become a widely used computing paradigm providing on-demand computing and storage capabilities based on pay-as-you-go model. Recently, many organizations, especially in the field of big data, have been adopting the cloud model to perform data analytics through leasing powerful Virtual Machines (VMs). VMs can be attractive targets to attackers as well as untrusted cloud providers who aim to get unauthorized access to the business critical-data. The obvious security solution is to perform data analytics on encrypted data through the use of cryptographic keys as that of the Advanced Encryption Standard (AES). However, it is very easy to obtain AES cryptographic keys from the VM's Random Access Memory (RAM). In this paper, we present a novel key-scattering (KS) approach to protect the cryptographic keys while encrypting/decrypting data. Our solution is highly portable and interoperable. Thus, it could be integrated within today's existing cloud architecture without the need for further modifications. The feasibility of the approach has been proven by implementing a functioning prototype. The evaluation results show that our approach is substantially more resilient to brute force attacks and key extraction tools than the standard AES algorithm, with acceptable execution time.
Since many cryptographic schemes are about performing computation on data, it is important to consider a computation model which captures the prominent features of modern system architecture. Parallel random access machine (PRAM) is such an abstraction which not only models multiprocessor platforms, but also new frameworks supporting massive parallel computation such as MapReduce. In this work, we explore the feasibility of designing cryptographic solutions for the PRAM model of computation to achieve security while leveraging the power of parallelism and random data access. We demonstrate asymptotically optimal solutions for a wide-range of cryptographic tasks based on indistinguishability obfuscation. In particular, we construct the first publicly verifiable delegation scheme with privacy in the persistent database setting, which allows a client to privately delegate both computation and data to a server with optimal efficiency. Specifically, the server can perform PRAM computation on private data with parallel efficiency preserved (up to poly-logarithmic overhead). Our results also cover succinct randomized encoding, searchable encryption, functional encryption, secure multiparty computation, and indistinguishability obfuscation for PRAM. We obtain our results in a modular way through a notion of computational-trace indistinguishability obfuscation (CiO), which may be of independent interests.
Nowadays, Memory Forensics is more acceptable in Cyber Forensics Investigation because malware authors and attackers choose RAM or physical memory for storing critical information instead of hard disk. The volatile physical memory contains forensically relevant artifacts such as user credentials, chats, messages, running processes and its details like used dlls, files, command and network connections etc. Memory Forensics involves acquiring the memory dump from the Suspect's machine and analyzing the acquired dump to find out crucial evidence with the help of windows pre-defined kernel data structures. While retrieving different artifacts from these data structures, finding the network connections from Windows 7 system's memory dump is a very challenging task. This is because the data structures that store network connections in earlier versions of Windows are not present in Windows 7. In this paper, a methodology is described for efficiently retrieving details of network related activities from Windows 7 x64 memory dump. This includes remote and local IP addresses and associated port information corresponding to each of the running processes. This can provide crucial information in cyber crime investigation.