Visible to the public Biblio

Filters: Author is Salah, K.  [Clear All Filters]
2018-04-02
Mamun, A. Al, Salah, K., Al-maadeed, S., Sheltami, T. R..  2017.  BigCrypt for Big Data Encryption. 2017 Fourth International Conference on Software Defined Systems (SDS). :93–99.

as data size is growing up, cloud storage is becoming more familiar to store a significant amount of private information. Government and private organizations require transferring plenty of business files from one end to another. However, we will lose privacy if we exchange information without data encryption and communication mechanism security. To protect data from hacking, we can use Asymmetric encryption technique, but it has a key exchange problem. Although Asymmetric key encryption deals with the limitations of Symmetric key encryption it can only encrypt limited size of data which is not feasible for a large amount of data files. In this paper, we propose a probabilistic approach to Pretty Good Privacy technique for encrypting large-size data, named as ``BigCrypt'' where both Symmetric and Asymmetric key encryption are used. Our goal is to achieve zero tolerance security on a significant amount of data encryption. We have experimentally evaluated our technique under three different platforms.

2018-02-02
Mohamed, F., AlBelooshi, B., Salah, K., Yeun, C. Y., Damiani, E..  2017.  A Scattering Technique for Protecting Cryptographic Keys in the Cloud. 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W). :301–306.

Cloud computing has become a widely used computing paradigm providing on-demand computing and storage capabilities based on pay-as-you-go model. Recently, many organizations, especially in the field of big data, have been adopting the cloud model to perform data analytics through leasing powerful Virtual Machines (VMs). VMs can be attractive targets to attackers as well as untrusted cloud providers who aim to get unauthorized access to the business critical-data. The obvious security solution is to perform data analytics on encrypted data through the use of cryptographic keys as that of the Advanced Encryption Standard (AES). However, it is very easy to obtain AES cryptographic keys from the VM's Random Access Memory (RAM). In this paper, we present a novel key-scattering (KS) approach to protect the cryptographic keys while encrypting/decrypting data. Our solution is highly portable and interoperable. Thus, it could be integrated within today's existing cloud architecture without the need for further modifications. The feasibility of the approach has been proven by implementing a functioning prototype. The evaluation results show that our approach is substantially more resilient to brute force attacks and key extraction tools than the standard AES algorithm, with acceptable execution time.