Visible to the public Biblio

Filters: Keyword is insider attack  [Clear All Filters]
2022-07-12
Patel, Mansi, Prabhu, S Raja, Agrawal, Animesh Kumar.  2021.  Network Traffic Analysis for Real-Time Detection of Cyber Attacks. 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom). :642—646.
Preventing the cyberattacks has been a concern for any organization. In this research, the authors propose a novel method to detect cyberattacks by monitoring and analyzing the network traffic. It was observed that the various log files that are created in the server does not contain all the relevant traces to detect a cyberattack. Hence, the HTTP traffic to the web server was analyzed to detect any potential cyberattacks. To validate the research, a web server was simulated using the Opensource Damn Vulnerable Web Application (DVWA) and the cyberattacks were simulated as per the OWASP standards. A python program was scripted that captured the network traffic to the DVWA server. This traffic was analyzed in real-time by reading the various HTTP parameters viz., URLs, Get / Post methods and the dependencies. The results were found to be encouraging as all the simulated attacks in real-time could be successfully detected. This work can be used as a template by various organizations to prevent any insider threat by monitoring the internal HTTP traffic.
2022-06-07
Varsha Suresh, P., Lalitha Madhavu, Minu.  2021.  Insider Attack: Internal Cyber Attack Detection Using Machine Learning. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1–7.
A Cyber Attack is a sudden attempt launched by cybercriminals against multiple computers or networks. According to evolution of cyber space, insider attack is the most serious attack faced by end users, all over the world. Cyber Security reports shows that both US federal Agency as well as different organizations faces insider threat. Machine learning (ML) provide an important technology to secure data from insider threats. Random Forest is the best algorithm that focus on user's action, services and ability for insider attack detection based on data granularity. Substantial raise in the count of decision tree, increases the time consumption and complexity of Random Forest. A novel algorithm Known as Random Forest With Randomized Weighted Fuzzy Feature Set (RF-RWFF) is developed. Fuzzy Membership Function is used for feature aggregation and Randomized Weighted Majority Algorithm (RWMA) is used in the prediction part of Random Forest (RF) algorithm to perform voting. RWMA transform conventional Random Forest, to a perceptron like algorithm and increases the miliage. The experimental results obtained illustrate that the proposed model exhibits an overall improvement in accuracy and recall rate with very much decrease in time complexity compared to conventional Random Forest algorithm. This algorithm can be used in organization and government sector to detect insider fastly and accurately.
2021-11-30
Li, Gangqiang, Wu, Sissi Xiaoxiao, Zhang, Shengli, Li, Qiang.  2020.  Detect Insider Attacks Using CNN in Decentralized Optimization. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8758–8762.
This paper studies the security issue of a gossip-based distributed projected gradient (DPG) algorithm, when it is applied for solving a decentralized multi-agent optimization. It is known that the gossip-based DPG algorithm is vulnerable to insider attacks because each agent locally estimates its (sub)gradient without any supervision. This work leverages the convolutional neural network (CNN) to perform the detection and localization of the insider attackers. Compared to the previous work, CNN can learn appropriate decision functions from the original state information without preprocessing through artificially designed rules, thereby alleviating the dependence on complex pre-designed models. Simulation results demonstrate that the proposed CNN-based approach can effectively improve the performance of detecting and localizing malicious agents, as compared with the conventional pre-designed score-based model.
2021-01-18
Sebbah, A., Kadri, B..  2020.  A Privacy and Authentication Scheme for IoT Environments Using ECC and Fuzzy Extractor. 2020 International Conference on Intelligent Systems and Computer Vision (ISCV). :1–5.
The internet of things (IoT) is consisting of many complementary elements which have their own specificities and capacities. These elements are gaining new application and use cases in our lives. Nevertheless, they open a negative horizon of security and privacy issues which must be treated delicately before the deployment of any IoT. Recently, different works emerged dealing with the same branch of issues, like the work of Yuwen Chen et al. that is called LightPriAuth. LightPriAuth has several drawbacks and weakness against various popular attacks such as Insider attack and stolen smart card. Our objective in this paper is to propose a novel solution which is “authentication scheme with three factor using ECC and fuzzy extractor” to ensure security and privacy. The obtained results had proven the superiority of our scheme's performances compared to that of LightPriAuth which, additionally, had defeated the weaknesses left by LightPriAuth.
2020-08-28
Duncan, Adrian, Creese, Sadie, Goldsmith, Michael.  2019.  A Combined Attack-Tree and Kill-Chain Approach to Designing Attack-Detection Strategies for Malicious Insiders in Cloud Computing. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1—9.

Attacks on cloud-computing services are becoming more prevalent with recent victims including Tesla, Aviva Insurance and SIM-card manufacturer Gemalto[1]. The risk posed to organisations from malicious insiders is becoming more widely known about and consequently many are now investing in hardware, software and new processes to try to detect these attacks. As for all types of attack vector, there will always be those which are not known about and those which are known about but remain exceptionally difficult to detect - particularly in a timely manner. We believe that insider attacks are of particular concern in a cloud-computing environment, and that cloud-service providers should enhance their ability to detect them by means of indirect detection. We propose a combined attack-tree and kill-chain based method for identifying multiple indirect detection measures. Specifically, the use of attack trees enables us to encapsulate all detection opportunities for insider attacks in cloud-service environments. Overlaying the attack tree on top of a kill chain in turn facilitates indirect detection opportunities higher-up the tree as well as allowing the provider to determine how far an attack has progressed once suspicious activity is detected. We demonstrate the method through consideration of a specific type of insider attack - that of attempting to capture virtual machines in transit within a cloud cluster via use of a network tap, however, the process discussed here applies equally to all cloud paradigms.

2020-04-24
Ogale, Pushkar, Shin, Michael, Abeysinghe, Sasanka.  2018.  Identifying Security Spots for Data Integrity. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC). 02:462—467.

This paper describes an approach to detecting malicious code introduced by insiders, which can compromise the data integrity in a program. The approach identifies security spots in a program, which are either malicious code or benign code. Malicious code is detected by reviewing each security spot to determine whether it is malicious or benign. The integrity breach conditions (IBCs) for object-oriented programs are specified to identify security spots in the programs. The IBCs are specified by means of the concepts of coupling within an object or between objects. A prototype tool is developed to validate the approach with a case study.

2019-03-06
Suwansrikham, P., She, K..  2018.  Asymmetric Secure Storage Scheme for Big Data on Multiple Cloud Providers. 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS). :121-125.

Recently, cloud computing is an emerging technology along with big data. Both technologies come together. Due to the enormous size of data in big data, it is impossible to store them in local storage. Alternatively, even we want to store them locally, we have to spend much money to create bit data center. One way to save money is store big data in cloud storage service. Cloud storage service provides users space and security to store the file. However, relying on single cloud storage may cause trouble for the customer. CSP may stop its service anytime. It is too risky if data owner hosts his file only single CSP. Also, the CSP is the third party that user have to trust without verification. After deploying his file to CSP, the user does not know who access his file. Even CSP provides a security mechanism to prevent outsider attack. However, how user ensure that there is no insider attack to steal or corrupt the file. This research proposes the way to minimize the risk, ensure data privacy, also accessing control. The big data file is split into chunks and distributed to multiple cloud storage provider. Even there is insider attack; the attacker gets only part of the file. He cannot reconstruct the whole file. After splitting the file, metadata is generated. Metadata is a place to keep chunk information, includes, chunk locations, access path, username and password of data owner to connect each CSP. Asymmetric security concept is applied to this research. The metadata will be encrypted and transfer to the user who requests to access the file. The file accessing, monitoring, metadata transferring is functions of dew computing which is an intermediate server between the users and cloud service.

2017-03-07
Amin, R., Islam, S. K. H., Biswas, G. P., Khan, M. K..  2015.  An efficient remote mutual authentication scheme using smart mobile phone over insecure networks. 2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–7.

To establish a secure connection between a mobile user and a remote server, this paper presents a session key agreement scheme through remote mutual authentication protocol by using mobile application software(MAS). We analyzed the security of our protocol informally, which confirms that the protocol is secure against all the relevant security attacks including off-line identity-password guessing attacks, user-server impersonation attacks, and insider attack. In addition, the widely accepted simulator tool AVISPA simulates the proposed protocol and confirms that the protocol is SAFE under the OFMC and CL-AtSe back-ends. Our protocol not only provide strong security against the relevant attacks, but it also achieves proper mutual authentication, user anonymity, known key secrecy and efficient password change operation. The performance comparison is also performed, which ensures that the protocol is efficient in terms of computation and communication costs.