Biblio
Cross-Site Request Forgery (CSRF) is one of the oldest and simplest attacks on the Web, yet it is still effective on many websites and it can lead to severe consequences, such as economic losses and account takeovers. Unfortunately, tools and techniques proposed so far to identify CSRF vulnerabilities either need manual reviewing by human experts or assume the availability of the source code of the web application. In this paper we present Mitch, the first machine learning solution for the black-box detection of CSRF vulnerabilities. At the core of Mitch there is an automated detector of sensitive HTTP requests, i.e., requests which require protection against CSRF for security reasons. We trained the detector using supervised learning techniques on a dataset of 5,828 HTTP requests collected on popular websites, which we make available to other security researchers. Our solution outperforms existing detection heuristics proposed in the literature, allowing us to identify 35 new CSRF vulnerabilities on 20 major websites and 3 previously undetected CSRF vulnerabilities on production software already analyzed using a state-of-the-art tool.
Clickjacking attacks are emerging threats to websites of different sizes and shapes. They are particularly used by threat agents to get more likes and/or followers in Online Social Networks (OSNs). This paper reviews the clickjacking attacks and the classic solutions to tackle various forms of those attacks. Different approaches of Cross-Site Scripting attacks are implemented in this study to study the attack tools and methods. Various iFrame attacks have been developed to tamper with the integrity of the website interactions at the application layer. By visually demonstrating the attacks such as Cross-Site scripting (XSS) and Cross-Site Request Forgery (CSRF), users will be able to have a better understanding of such attacks in their formulation and the risks associated with them.
The dynamic nature of the Web 2.0 and the heavy obfuscation of web-based attacks complicate the job of the traditional protection systems such as Firewalls, Anti-virus solutions, and IDS systems. It has been witnessed that using ready-made toolkits, cyber-criminals can launch sophisticated attacks such as cross-site scripting (XSS), cross-site request forgery (CSRF) and botnets to name a few. In recent years, cyber-criminals have targeted legitimate websites and social networks to inject malicious scripts that compromise the security of the visitors of such websites. This involves performing actions using the victim browser without his/her permission. This poses the need to develop effective mechanisms for protecting against Web 2.0 attacks that mainly target the end-user. In this paper, we address the above challenges from information flow control perspective by developing a framework that restricts the flow of information on the client-side to legitimate channels. The proposed model tracks sensitive information flow and prevents information leakage from happening. The proposed model when applied to the context of client-side web-based attacks is expected to provide a more secure browsing environment for the end-user.
The dynamic nature of the Web 2.0 and the heavy obfuscation of web-based attacks complicate the job of the traditional protection systems such as Firewalls, Anti-virus solutions, and IDS systems. It has been witnessed that using ready-made toolkits, cyber-criminals can launch sophisticated attacks such as cross-site scripting (XSS), cross-site request forgery (CSRF) and botnets to name a few. In recent years, cyber-criminals have targeted legitimate websites and social networks to inject malicious scripts that compromise the security of the visitors of such websites. This involves performing actions using the victim browser without his/her permission. This poses the need to develop effective mechanisms for protecting against Web 2.0 attacks that mainly target the end-user. In this paper, we address the above challenges from information flow control perspective by developing a framework that restricts the flow of information on the client-side to legitimate channels. The proposed model tracks sensitive information flow and prevents information leakage from happening. The proposed model when applied to the context of client-side web-based attacks is expected to provide a more secure browsing environment for the end-user.
Since the past 20 years the uses of web in daily life is increasing and becoming trend now. As the use of the web is increasing, the use of web application is also increasing. Apparently most of the web application exists up to today have some vulnerability that could be exploited by unauthorized person. Some of well-known web application vulnerabilities are Structured Query Language (SQL) Injection, Cross-Site Scripting (XSS) and Cross-Site Request Forgery (CSRF). By compromising with these web application vulnerabilities, the system cracker can gain information about the user and lead to the reputation of the respective organization. Usually the developers of web applications did not realize that their web applications have vulnerabilities. They only realize them when there is an attack or manipulation of their code by someone. This is normal as in a web application, there are thousands of lines of code, therefore it is not easy to detect if there are some loopholes. Nowadays as the hacking tools and hacking tutorials are easier to get, lots of new hackers are born. Even though SQL injection is very easy to protect against, there are still large numbers of the system on the internet are vulnerable to this type of attack because there will be a few subtle condition that can go undetected. Therefore, in this paper we propose a detection model for detecting and recognizing the web vulnerability which is; SQL Injection based on the defined and identified criteria. In addition, the proposed detection model will be able to generate a report regarding the vulnerability level of the web application. As the consequence, the proposed detection model should be able to decrease the possibility of the SQL Injection attack that can be launch onto the web application.
The dynamic nature of the Web 2.0 and the heavy obfuscation of web-based attacks complicate the job of the traditional protection systems such as Firewalls, Anti-virus solutions, and IDS systems. It has been witnessed that using ready-made toolkits, cyber-criminals can launch sophisticated attacks such as cross-site scripting (XSS), cross-site request forgery (CSRF) and botnets to name a few. In recent years, cyber-criminals have targeted legitimate websites and social networks to inject malicious scripts that compromise the security of the visitors of such websites. This involves performing actions using the victim browser without his/her permission. This poses the need to develop effective mechanisms for protecting against Web 2.0 attacks that mainly target the end-user. In this paper, we address the above challenges from information flow control perspective by developing a framework that restricts the flow of information on the client-side to legitimate channels. The proposed model tracks sensitive information flow and prevents information leakage from happening. The proposed model when applied to the context of client-side web-based attacks is expected to provide a more secure browsing environment for the end-user.
CSRFGuard is a tool running on the Java EE platform to defend Cross-Site Request Forgery (CSRF) attacks, but there are some shortcomings: scripts should be inserted manually, dynamically created requests cannot be effectively handled as well as defense can be bypassed through Cross-Site Scripting (XSS). Corresponding improvements were made according to the shortcomings. The Servlet filter was used to intercept responses, and responses of pages' source codes were stored by a custom response wrapper class to add script tags, so that scripts were automatically inserted. JavaScript event delegation mechanism was used to bind forms with onfocus and onsubmit events, then dynamically created requests were effectively handled. Token dynamically added through event triggered effectively prevented defense bypassed through XSS. The experimental results show that improved CSRFGuard can be effective to defend CSRF attacks.