Visible to the public Biblio

Filters: Keyword is mobile applications  [Clear All Filters]
2023-07-20
Schindler, Christian, Atas, Müslüm, Strametz, Thomas, Feiner, Johannes, Hofer, Reinhard.  2022.  Privacy Leak Identification in Third-Party Android Libraries. 2022 Seventh International Conference On Mobile And Secure Services (MobiSecServ). :1—6.
Developers of mobile applications rely on the trust of their customers. On the one hand the requirement exists to create feature-rich and secure apps, which adhere to privacy standards to not deliberately disclose user information. On the other hand the development process must be streamlined to reduce costs. Here third-party libraries come into play. Inclusion of many, possibly nested libraries pose security risks, app-creators are often not aware of. This paper presents a way to combine free open-source tools to support developers in checking their application that it does not induce security issues by using third-party libraries. The tools FlowDroid, Frida, and mitm-proxy are used in combination in a simple and viable way to perform checks to identify privacy leaks of third-party apps. Our proposed setup and configuration empowers average app developers to preserve user privacy without being dedicated security experts and without expensive external advice.
2023-03-31
Hu, Zhiyuan, Shi, Linghang, Chen, Huijun, Li, Chao, Lu, Jinghui.  2022.  Security Assessment of Android-Based Mobile Terminals. 2022 25th International Symposium on Wireless Personal Multimedia Communications (WPMC). :279–284.
Mobile terminals especially smartphones are changing people's work and life style. For example, mobile payments are experiencing rapid growth as consumers use mobile terminals as part of lifestyles. However, security is a big challenge for mobile application services. In order to reduce security risks, mobile terminal security assessment should be conducted before providing application services. An approach of comprehensive security assessment is proposed in this paper by defining security metrics with the corresponding scores and determining the relative weights of security metrics based on the analytical hierarchy process (AHP). Overall security assessment of Android-based mobile terminals is implemented for mobile payment services with payment fraud detection accuracy of 89%, which shows that the proposed approach of security assessment is reasonable.
ISSN: 1882-5621
2023-02-17
Khan, Shahnawaz, Yusuf, Ammar, Haider, Mohammad, Thirunavukkarasu, K., Nand, Parma, Imam Rahmani, Mohammad Khalid.  2022.  A Review of Android and iOS Operating System Security. 2022 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS). :67–72.
Mobile devices are an inseparable part of our lives. They have made it possible to access all the information and services anywhere at any time. Almost all of the organizations try to provide a mobile device-based solution to its users. However, this convenience has arisen the risk of losing personal information and has increased the threat to security. It has been observed recently that some of the mobile device manufacturers and mobile apps developers have lost the private information of their users to hackers. It has risen a great concern among mobile device users about their personal information. Android and iOS are the major operating systems for mobile devices and share over 99% of the mobile device market. This research aims to conduct a comparative analysis of the security of the components in the Android and iOS operating systems. It analyses the security from several perspectives such as memory randomization, application sandboxing, isolation, encryption, built-in antivirus, and data storage. From the analysis, it is evident that iOS is more secure than Android operating system. However, this security comes with a cost of losing the freedom.
2023-02-03
Ahmed, Shamim, Biswas, Milon, Hasanuzzaman, Md., Nayeen Mahi, Md. Julkar, Ashraful Islam, Md., Chaki, Sudipto, Gaur, Loveleen.  2022.  A Secured Peer-to-Peer Messaging System Based on Blockchain. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :332–337.
Nowadays, the messaging system is one of the most popular mobile applications, and therefore the authentication between clients is essential. Various kinds of such mobile applications are using encryption-based security protocols, but they are facing many security threat issues. It clearly defines the necessity for a trustful security procedure. Therefore, a blockchain-based messaging system could be an alternative to this problem. That is why, we have developed a secured peer-to-peer messaging system supported by blockchain. This proposed mechanism provides data security among the users. In a blockchain-based framework, all the information can be verified and controlled automatically and all the transactions are recorded that have been created already. In our paper, we have explained how the users can communicate through a blockchain-based messaging system that can maintain a secured network. We explored why blockchain would improve communication security in this post, and we proposed a model architecture for blockchain-based messaging that retains the performance and security of data stored on the blockchain. Our proposed architecture is completely decentralized and enables users to send and receive messages in an acceptable and secure manner.
2023-01-20
Yong, Li, Mu, Chen, ZaoJian, Dai, Lu, Chen.  2022.  Security situation awareness method of power mobile application based on big data architecture. 2022 5th International Conference on Data Science and Information Technology (DSIT). :1–6.

According to the characteristics of security threats and massive users in power mobile applications, a mobile application security situational awareness method based on big data architecture is proposed. The method uses open-source big data technology frameworks such as Kafka, Flink, Elasticsearch, etc. to complete the collection, analysis, storage and visual display of massive power mobile application data, and improve the throughput of data processing. The security situation awareness method of power mobile application takes the mobile terminal threat index as the core, divides the risk level for the mobile terminal, and predicts the terminal threat index through support vector machine regression algorithm (SVR), so as to construct the security profile of the mobile application operation terminal. Finally, through visualization services, various data such as power mobile applications and terminal assets, security operation statistics, security strategies, and alarm analysis are displayed to guide security operation and maintenance personnel to carry out power mobile application security monitoring and early warning, banning disposal and traceability analysis and other decision-making work. The experimental analysis results show that the method can meet the requirements of security situation awareness for threat assessment accuracy and response speed, and the related results have been well applied in a power company.

2023-01-13
Khan, Rida, Barakat, Salma, AlAbduljabbar, Lulwah, AlTayash, Yara, AlMussa, Nofe, AlQattan, Maryam, Jamail, Nor Shahida Mohd.  2022.  WhatsApp: Cyber Security Risk Management, Governance and Control. 2022 Fifth International Conference of Women in Data Science at Prince Sultan University (WiDS PSU). :160–165.
This document takes an in-depth approach to identify WhatsApp's Security risk management, governance and controls. WhatsApp is a communication mobile application that is available on both android and IOS, recently acquired by Facebook and allows us to stay connected. This document identifies all necessary assets, threats, vulnerabilities, and risks to WhatsApp and further provides mitigations and security controls to possibly utilize and secure the application.
2022-09-30
Rahkema, Kristiina.  2021.  Quality analysis of mobile applications with special focus on security aspects. 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1087–1089.
Smart phones and mobile apps have become an essential part of our daily lives. It is necessary to ensure the quality of these apps. Two important aspects of code quality are maintainability and security. The goals of my PhD project are (1) to study code smells, security issues and their evolution in iOS apps and frameworks, (2) to enhance training and teaching using visualisation support, and (3) to support developers in automatically detecting dependencies to vulnerable library elements in their apps. For each of the three tools, dedicated tool support will be provided, i.e., GraphifyEvolution, VisualiseEvolution, and DependencyEvolution respectively. The tool GraphifyEvolution exists and has been applied to analyse code smells in iOS apps written in Swift. The tool has a modular architecture and can be extended to add support for additional languages and external analysis tools. In the remaining two years of my PhD studies, I will complete the other two tools and apply them in case studies with developers in industry as well as in university teaching.
2022-08-26
Ochante-Huamaccto, Yulihño, Robles-Delgado, Francis, Cabanillas-Carbonell, Michael.  2021.  Analysis for crime prevention using ICT. A review of the scientific literature from 2015 – 2021. 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON). :1—6.
Crime is a social problem that after the confinement of COVID-19 has increased significantly worldwide, which is why it is important to know what technological tools can be used to prevent criminal acts. In the present work, a systemic analysis was carried out to determine the importance of how to prevent crime using new information technologies. Fifty research articles were selected between 2015 and 2021. The information was obtained from different databases such as IEEE Xplore, Redalyc, Scopus, SciELO and Medline. Keywords were used to delimit the search and be more precise in our inquiry on the web. The results obtained show specific information on how to prevent crime using new information technologies. We conclude that new information technologies help to prevent crime since several developed countries have implemented their security system effectively, while underdeveloped countries do not have adequate technologies to prevent crime.
Pande, Prateek, Mallaiah, Kurra, Gandhi, Rishi Kumar, Medatiya, Amit Kumar, Srinivasachary, S.  2021.  Fine Grained Confinement of Untrusted Third-Party Applications in Android. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :372—376.
Third party mobile applications are dominating the business strategies of organisations and have become an integral part of personal life of individuals. These applications are used for financial transactions, sharing of sensitive data etc. The recent breaches in Android clearly indicate that use of third party applications have become a serious security threat. By design, Android framework keeps all these applications in untrusted domain. Due to this a common policy of resource control exists for all such applications. Further, user discretion in granting permissions to specific applications is not effective because users are not always aware of deep functionalities, mala fide intentions (in case of spywares) and bugs/flaws in these third-party applications. In this regard, we propose a security scheme to mitigate unauthorised access of resources by third party applications. Our proposed scheme is based on SEAndroid policies and achieves fine grained confinement with respect to access control for the third party applications. To the best of our knowledge, the proposed scheme is unique and first of its kind. The proposed scheme is integrated with Android Oreo 8.1.0 for performance and security analysis. It is compatible with any Android device with AOSP support.
2022-07-14
Ahmad, Lina, Al-Sabha, Rania, Al-Haj, Ali.  2021.  Design and Implementation of a Secure QR Payment System Based on Visual Cryptography. 2021 7th International Conference on Information Management (ICIM). :40–44.
In this paper, we will describe the design and implementation of a secure payment system based on QR codes. These QR codes have been extensively used in recent years since they speed up the payment process and provide users with ultimate convenience. However, as convenient as they may sound, QR-based online payment systems are vulnerable to different types of attacks. Therefore, transaction processing needs to be secure enough to protect the integrity and confidentiality of every payment process. Moreover, the online payment system must provide authenticity for both the sender and receiver of each transaction. In this paper, the security of the proposed QR-based system is provided using visual cryptography. The proposed system consists of a mobile application and a payment gateway server that implements visual cryptography. The application provides a simple and user-friendly interface for users to carry out payment transactions in user-friendly secure environment.
2022-06-09
Jawad, Sidra, Munsif, Hadeera, Azam, Arsal, Ilahi, Arham Hasib, Zafar, Saima.  2021.  Internet of Things-based Vehicle Tracking and Monitoring System. 2021 15th International Conference on Open Source Systems and Technologies (ICOSST). :1–5.
Vehicles play an integral part in the life of a human being by facilitating in everyday tasks. The major concern that arises with this fact is that the rate of vehicle thefts have increased exponentially and retrieving them becomes almost impossible as the responsible party completely alters the stolen vehicles, leaving them untraceable. Ultimately, tracking and monitoring of vehicles using on-vehicle sensors is a promising and an efficient solution. The Internet of Things (IoT) is expected to play a vital role in revolutionizing the Security and Safety industry through a system of sensor networks by periodically sending the data from the sensors to the cloud for storage, from where it can be accessed to view or take any necessary actions (if required). The main contributions of this paper are the implementation and results of the prototype of a vehicle tracking and monitoring system. The system comprises of an Arduino UNO board connected to the Global Positioning System (GPS) module, Neo-6M, which senses the exact location of the vehicle in the form of latitude and longitude, and the ESP8266 Wi-Fi module, which sends the data to the Application Programming Interface (API) Cloud service, ThingSpeak, for storage and analyzing. An Android based mobile application is developed that utilizes the stored data from the Cloud and presents the user with the findings. Results show that the prototype is not only simple and cost effective, but also efficient and can be readily used by everyone from all walks of life to protect their vehicles.
2022-05-10
Ali-Eldin, Amr M.T..  2021.  A Cloud-Based Trust Computing Model for the Social Internet of Things. 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). :161–165.
As IoT systems would have an economic impact, they are gaining growing interest. Millions of IoT devices are expected to join the internet of things, which will carny both major benefits and significant security threats to consumers. For IoT systems that secure data and preserve privacy of users, trust management is an essential component. IoT objects carry on the ownership settings of their owners, allowing them to interact with each other. Social relationships are believed to be important in confidence building. In this paper, we explain how to compute trust in social IoT environments using a cloud-based approach.
2022-04-12
Redini, Nilo, Continella, Andrea, Das, Dipanjan, De Pasquale, Giulio, Spahn, Noah, Machiry, Aravind, Bianchi, Antonio, Kruegel, Christopher, Vigna, Giovanni.  2021.  Diane: Identifying Fuzzing Triggers in Apps to Generate Under-constrained Inputs for IoT Devices. 2021 IEEE Symposium on Security and Privacy (SP). :484—500.
Internet of Things (IoT) devices have rooted themselves in the everyday life of billions of people. Thus, researchers have applied automated bug finding techniques to improve their overall security. However, due to the difficulties in extracting and emulating custom firmware, black-box fuzzing is often the only viable analysis option. Unfortunately, this solution mostly produces invalid inputs, which are quickly discarded by the targeted IoT device and do not penetrate its code. Another proposed approach is to leverage the companion app (i.e., the mobile app typically used to control an IoT device) to generate well-structured fuzzing inputs. Unfortunately, the existing solutions produce fuzzing inputs that are constrained by app-side validation code, thus significantly limiting the range of discovered vulnerabilities.In this paper, we propose a novel approach that overcomes these limitations. Our key observation is that there exist functions inside the companion app that can be used to generate optimal (i.e., valid yet under-constrained) fuzzing inputs. Such functions, which we call fuzzing triggers, are executed before any data-transforming functions (e.g., network serialization), but after the input validation code. Consequently, they generate inputs that are not constrained by app-side sanitization code, and, at the same time, are not discarded by the analyzed IoT device due to their invalid format. We design and develop Diane, a tool that combines static and dynamic analysis to find fuzzing triggers in Android companion apps, and then uses them to fuzz IoT devices automatically. We use Diane to analyze 11 popular IoT devices, and identify 11 bugs, 9 of which are zero days. Our results also show that without using fuzzing triggers, it is not possible to generate bug-triggering inputs for many devices.
2022-04-01
Rhunn, Tommy Cha Hweay, Raffei, Anis Farihan Mat, Rahman, Nur Shamsiah Abdul.  2021.  Internet of Things (IoT) Based Door Lock Security System. 2021 International Conference on Software Engineering Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). :6–9.
A door enables you to enter a room without breaking through a wall. Also, a door enables you for privacy, environmental or security reasons. The problem statement which is the biometric system sometimes is sensitive and will not be able to sense the biological pattern of the employer’s fingerprint due to sweat and other factors. Next, people tend to misplace their key or RFID card. Apart from that, people tend to forget their pin number for a door lock. The objective of this paper is to present a secret knock intensity for door lock security system using Arduino and mobile. This project works by using a knock intensity and send the information to mobile application via wireless network to unlock or lock the door.
2022-03-14
Ali, Ahtasham, Al-Perumal, Sundresan.  2021.  Source Code Analysis for Mobile Applications for Privacy Leaks. 2021 IEEE Madras Section Conference (MASCON). :1—6.
Intelligent gadgets for example smartphones, tablet phones, and personal digital assistants play an increasingly important part in our lives and have become indispensable in our everyday routines. As a result, the market for mobile apps tends to grow at a rapid rate, and mobile app utilization has long eclipsed that of desktop software. The applications based on these smartphones are becoming vulnerable due to the use of open-source operating systems in these smart devices. These applications are vulnerable to smartphones because of memory leaks; they can steal personal data, hack our smartphones, and monitor our private activity, giving anyone significant financial loss. Because of these issues, smartphone security plays a vital role in our daily lives. The Play Store contains unrated applications which any unprofessional developer can develop, and these applications do not pass through the rigorous process of testing and analysis of code leaks. The existing developed system does not include a stringent procedure to examine and investigate source code to detect such vulnerabilities among mobile applications. This paper presented a dynamic analysis-based robust system for Source Code Analysis of Mobile Applications for Privacy Leaks using a machine learning algorithm. Furthermore, our framework is called Source Code Analysis of Mobile Applications (SCA-MA), which combines DynaLog and our machine learning-based classifier for Source Code Analysis of Mobile Applications. Our dataset will contain around 20000 applications to test and analyze vulnerabilities. We will perform dynamic analysis and separate the classification of vulnerable applications and safe applications. Our results show that we can detect vulnerabilities through our proposed system while reviewing code and provide better results than other existing frameworks. We have evaluated our large dataset with the pervasive way so we can detect even small privacy leak which can harm our app. Finally, we have compared results with existing methods, and framework performance is better than other methods.
2022-02-24
Anikeev, Maxim, Shulman, Haya, Simo, Hervais.  2021.  Privacy Policies of Mobile Apps - A Usability Study. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
We perform the first post EU General Data Protection Regulation (GDPR) usability study of privacy policies for mobile apps. For our analysis, we collect a dataset of historical (prior to GDPR implementation in May 2018) and contemporary privacy policies in different categories. In contrast to the common belief, that after the GDPR most of the privacy policies are easier to understand, our analysis shows that this is not so.
2022-02-07
Singh, Shirish, Kaiser, Gail.  2021.  Metamorphic Detection of Repackaged Malware. 2021 IEEE/ACM 6th International Workshop on Metamorphic Testing (MET). :9–16.
Machine learning-based malware detection systems are often vulnerable to evasion attacks, in which a malware developer manipulates their malicious software such that it is misclassified as benign. Such software hides some properties of the real class or adopts some properties of a different class by applying small perturbations. A special case of evasive malware hides by repackaging a bonafide benign mobile app to contain malware in addition to the original functionality of the app, thus retaining most of the benign properties of the original app. We present a novel malware detection system based on metamorphic testing principles that can detect such benign-seeming malware apps. We apply metamorphic testing to the feature representation of the mobile app, rather than to the app itself. That is, the source input is the original feature vector for the app and the derived input is that vector with selected features removed. If the app was originally classified benign, and is indeed benign, the output for the source and derived inputs should be the same class, i.e., benign, but if they differ, then the app is exposed as (likely) malware. Malware apps originally classified as malware should retain that classification, since only features prevalent in benign apps are removed. This approach enables the machine learning model to classify repackaged malware with reasonably few false negatives and false positives. Our training pipeline is simpler than many existing ML-based malware detection methods, as the network is trained end-to-end to jointly learn appropriate features and to perform classification. We pre-trained our classifier model on 3 million apps collected from the widely-used AndroZoo dataset.1 We perform an extensive study on other publicly available datasets to show our approach's effectiveness in detecting repackaged malware with more than 94% accuracy, 0.98 precision, 0.95 recall, and 0.96 F1 score.
2022-01-25
Contașel, Cristian, Trancă, Dumitru-Cristian, Pălăcean, Alexandru-Viorel.  2021.  Cloud based mobile application security enforcement using device attestation API. 2021 20th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1–5.
Today the mobile devices are more and more present in our lives, and the mobile applications market has experienced a sharp growth. Most of these applications are made to make our daily lives easier, and for this a large part of them consume various web services. Given this transition, from desktop and web applications to mobile applications, many critical services have begun to expose their APIs for use by such application clients. Unfortunately, this transition has paved the way for new vulnerabilities, vulnerabilities used to compress cloud services. In this article we analyzed the main security problems and how they can be solved using the attestation services, the services that indicate that the device running the application and the client application are genuine.
2022-01-10
Moonamaldeniya, Menaka, Priyashantha, V.R.S.C., Gunathilake, M.B.N.B., Ransinghe, Y.M.P.B., Ratnayake, A.L.S.D., Abeygunawardhana, Pradeep K.W..  2021.  Prevent Data Exfiltration on Smart Phones Using Audio Distortion and Machine Learning. 2021 Moratuwa Engineering Research Conference (MERCon). :345–350.
Attacks on mobile devices have gained a significant amount of attention lately. This is because more and more individuals are switching to smartphones from traditional non-smartphones. Therefore, attackers or cybercriminals are now getting on the bandwagon to have an opportunity at obtaining information stored on smartphones. In this paper, we present an Android mobile application that will aid to minimize data exfiltration from attacks, such as, Acoustic Side-Channel Attack, Clipboard Jacking, Permission Misuse and Malicious Apps. This paper will commence its inception with an introduction explaining the current issues in general and how attacks such as side-channel attacks and clipboard jacking paved the way for data exfiltration. We will also discuss a few already existing solutions that try to mitigate these problems. Moving on to the methodology we will emphasize how we came about the solution and what methods we followed to achieve the end goal of securing the smartphone. In the final section, we will discuss the outcomes of the project and conclude what needs to be done in the future to enhance this project so that this mobile application will continue to keep the user's data safe from the criminals' grasps.
Jayanthy, S., Nageswarvijay, S., Kumar, R. K. Rishi, Kanth, R. Krishna.  2021.  Smart Key Using AES Algorithm. 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). :467–473.
This paper proposes a real time implementation of a smart key which is a Wi-Fi based device that helps to lock/unlock all kinds of doors. Internet access allows to control doors all over the world by a simple mobile application. The app developed can be used in two modes ADMIN and GUEST mode. The ADMIN mode is protected by pin/password and is encrypted by the Advanced Encryption Standard (AES) algorithm. The password can be stored in the Key store and it can be changed whenever required. The ADMIN mode has the privilege to authenticate the GUEST mode to access all doors. For GUEST mode authentication, guests have to request the admin by using the app. Firebase is used as a server where the device and the mobile app are connected to it. Firebase is fast and accurate and hence can be accessed quickly. The main advantage of this proposed method is that it is fully operated through Internet so it can locked/unlocked wherever from the world. Comparative analysis is taken for three algorithms i.e., AES, DES and 3-DES and AES algorithm has given the best results in terms of execution time and memory usage and is implemented in the hardware lock. The experimental results give the screen shots of the app in guest and admin mode, firebase data and hardware real time implementation of the smart lock on a door.
2021-12-22
Nascita, Alfredo, Montieri, Antonio, Aceto, Giuseppe, Ciuonzo, Domenico, Persico, Valerio, Pescapè, Antonio.  2021.  Unveiling MIMETIC: Interpreting Deep Learning Traffic Classifiers via XAI Techniques. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :455–460.
The widespread use of powerful mobile devices has deeply affected the mix of traffic traversing both the Internet and enterprise networks (with bring-your-own-device policies). Traffic encryption has become extremely common, and the quick proliferation of mobile apps and their simple distribution and update have created a specifically challenging scenario for traffic classification and its uses, especially network-security related ones. The recent rise of Deep Learning (DL) has responded to this challenge, by providing a solution to the time-consuming and human-limited handcrafted feature design, and better clas-sification performance. The counterpart of the advantages is the lack of interpretability of these black-box approaches, limiting or preventing their adoption in contexts where the reliability of results, or interpretability of polices is necessary. To cope with these limitations, eXplainable Artificial Intelligence (XAI) techniques have seen recent intensive research. Along these lines, our work applies XAI-based techniques (namely, Deep SHAP) to interpret the behavior of a state-of-the-art multimodal DL traffic classifier. As opposed to common results seen in XAI, we aim at a global interpretation, rather than sample-based ones. The results quantify the importance of each modality (payload- or header-based), and of specific subsets of inputs (e.g., TLS SNI and TCP Window Size) in determining the classification outcome, down to per-class (viz. application) level. The analysis is based on a publicly-released recent dataset focused on mobile app traffic.
2021-12-20
Singleton, Larry, Zhao, Rui, Siy, Harvey, Song, Myoungkyu.  2021.  FireBugs: Finding and Repairing Cryptography API Misuses in Mobile Applications. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1194–1201.
In this paper, we present FireBugs for Finding and Repairing Bugs based on security patterns. For the common misuse patterns of cryptography APIs (crypto APIs), we encode common cryptography rules into the pattern representations for bug detection and program repair regarding cryptography rule violations. In the evaluation, we conducted a case study to assess the bug detection capability by applying FireBugs to datasets mined from both open source and commercial projects. Also, we conducted a user study with professional software engineers at Mutual of Omaha Insurance Company to estimate the program repair capability. This evaluation showed that FireBugs can help professional engineers develop various cryptographic requirements in a resilient application.
A, Sujan Reddy, Rudra, Bhawana.  2021.  Evaluation of Recurrent Neural Networks for Detecting Injections in API Requests. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0936–0941.
Application programming interfaces (APIs) are a vital part of every online business. APIs are responsible for transferring data across systems within a company or to the users through the web or mobile applications. Security is a concern for any public-facing application. The objective of this study is to analyze incoming requests to a target API and flag any malicious activity. This paper proposes a solution using sequence models to identify whether or not an API request has SQL, XML, JSON, and other types of malicious injections. We also propose a novel heuristic procedure that minimizes the number of false positives. False positives are the valid API requests that are misclassified as malicious by the model.
2021-10-12
Chang, Kai Chih, Nokhbeh Zaeem, Razieh, Barber, K. Suzanne.  2020.  Is Your Phone You? How Privacy Policies of Mobile Apps Allow the Use of Your Personally Identifiable Information 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :256–262.
People continue to store their sensitive information in their smart-phone applications. Users seldom read an app's privacy policy to see how their information is being collected, used, and shared. In this paper, using a reference list of over 600 Personally Identifiable Information (PII) attributes, we investigate the privacy policies of 100 popular health and fitness mobile applications in both Android and iOS app markets to find the set of personal information these apps collect, use and share. The reference list of PII was independently built from a longitudinal study at The University of Texas investigating thousands of identity theft and fraud cases where PII attributes and associated value and risks were empirically quantified. This research leverages the reference PII list to identify and analyze the value of personal information collected by the mobile apps and the risk of disclosing this information. We found that the set of PII collected by these mobile apps covers 35% of the entire reference set of PII and, due to dependencies between PII attributes, these mobile apps have a likelihood of indirectly impacting 70% of the reference PII if breached. For a specific app, we discovered the monetary loss could reach \$1M if the set of sensitive data it collects is breached. We finally utilize Bayesian inference to measure risks of a set of PII gathered by apps: the probability that fraudsters can discover, impersonate and cause harm to the user by misusing only the PII the mobile apps collected.
2021-08-31
Zhang, Yifei, Gao, Neng, Chen, Junsha.  2020.  A Practical Defense against Attribute Inference Attacks in Session-based Recommendations. 2020 IEEE International Conference on Web Services (ICWS). :355–363.
When users in various web and mobile applications enjoy the convenience of recommendation systems, they are vulnerable to attribute inference attacks. The accumulating online behaviors of users (e.g., clicks, searches, ratings) naturally brings out user preferences, and poses an inevitable threat of privacy that adversaries can infer one's private profiles (e.g., gender, sexual orientation, political view) with AI-based algorithms. Existing defense methods assume the existence of a trusted third party, rely on computationally intractable algorithms, or have impact on recommendation utility. These imperfections make them impractical for privacy preservation in real-life scenarios. In this work, we introduce BiasBooster, a practical proactive defense method based on behavior segmentation, to protect user privacy against attribute inference attacks from user behaviors, while retaining recommendation utility with a heuristic recommendation aggregation module. BiasBooster is a user-centric approach from client side, which proactively divides a user's behaviors into weakly related segments and perform them with several dummy identities, then aggregates real-time recommendations for user from different dummy identities. We estimate its effectiveness of preservation on both privacy and recommendation utility through extensive evaluations on two real-world datasets. A Chrome extension is conducted to demonstrate the feasibility of applying BiasBooster in real world. Experimental results show that compared to existing defenses, BiasBooster substantially reduces the averaged accuracy of attribute inference attacks, with minor utility loss of recommendations.