Biblio
A new program has been developed for style and authorship attribution. Differentiation of styles by transcription symbols has proved to be efficient The novel approach involves a combination of two ways of transforming texts into their transcription variants. The java programming language makes it possible to improve efficiency of style and authorship attribution.
Traditional security controls, such as firewalls, anti-virus and IDS, are ill-equipped to help IT security and response teams keep pace with the rapid evolution of the cyber threat landscape. Cyber Threat Intelligence (CTI) can help remediate this problem by exploiting non-traditional information sources, such as hacker forums and "dark-web" social platforms. Security and response teams can use the collected intelligence to identify emerging threats. Unfortunately, when manual analysis is used to extract CTI from non-traditional sources, it is a time consuming, error-prone and resource intensive process. We address these issues by using a hybrid Machine Learning model that automatically searches through hacker forum posts, identifies the posts that are most relevant to cyber security and then clusters the relevant posts into estimations of the topics that the hackers are discussing. The first (identification) stage uses Support Vector Machines and the second (clustering) stage uses Latent Dirichlet Allocation. We tested our model, using data from an actual hacker forum, to automatically extract information about various threats such as leaked credentials, malicious proxy servers, malware that evades AV detection, etc. The results demonstrate our method is an effective means for quickly extracting relevant and actionable intelligence that can be integrated with traditional security controls to increase their effectiveness.
The Sensor Web is evolving into a complex information space, where large volumes of sensor observation data are often consumed by complex applications. Provenance has become an important issue in the Sensor Web, since it allows applications to answer “what”, “when”, “where”, “who”, “why”, and “how” queries related to observations and consumption processes, which helps determine the usability and reliability of data products. This paper investigates characteristics and requirements of provenance in the Sensor Web and proposes an interoperable approach to building a provenance model for the Sensor Web. Our provenance model extends the W3C PROV Data Model with Sensor Web domain vocabularies. It is developed using Semantic Web technologies and thus allows provenance information of sensor observations to be exposed in the Web of Data using the Linked Data approach. A use case illustrates the applicability of the approach.
In modern enterprises, incorrect or inconsistent security policies can lead to massive damage, e.g., through unintended data leakage. As policy authors have different skills and background knowledge, usable policy editors have to be tailored to the author's individual needs and to the corresponding application domain. However, the development of individual policy editors and the customization of existing ones is an effort consuming task. In this paper, we present a framework for generating tailored policy editors. In order to empower user-friendly and less error-prone specification of security policies, the framework supports multiple platforms, policy languages, and specification paradigms.
Dealing with increasing amounts of data creates the need to deal with redundant, inconsistent and/or complementary repositories which may be different in their data models and/or in their schema. Current data cleaning techniques developed to tackle data quality problems are just suitable for scenarios were all repositories share the same model and schema. Recently, an ontology-based methodology was proposed to overcome this limitation. In this paper, this methodology is briefly described and applied to a real scenario in the health domain with data quality problems.