Visible to the public Biblio

Filters: Keyword is firefly algorithm  [Clear All Filters]
2023-01-13
Kopecky, Sandra, Dwyer, Catherine.  2022.  Nature-inspired Metaheuristic Effectiveness Used in Phishing Intrusion Detection Systems with Firefly Algorithm Techniques. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1—7.
This paper discusses research-based findings of applying metaheuristic optimization techniques and nature-inspired algorithms to detect and mitigate phishing attacks. The focus will be on the Firefly nature-inspired metaheuristic algorithm optimized with Random Forest and Support Vector Machine (SVM) classification. Existing research recommends the development and use of nature-inspired detection techniques to solve complex real-world problems. Existing research using nature-inspired heuristics appears to be promising in solving NP-hard problems such as the traveling salesperson problem. In the same classification of NP-hard, is that of cyber security existing research indicates that the security threats are complex, and that providing security is an NP-hard problem. This study is expanding the existing research with a hybrid optimization of nature-inspired metaheuristic with existing classifiers (random forest and SVM) for an improvement in results to include increased true positives and decreased false positives. The proposed study will present the importance of nature and natural processes in developing algorithms and systems with high precision and accuracy.
2022-08-10
Kalpana, C., Booba, B..  2021.  Bio-Inspired Firefly Algorithm A Methodical Survey – Swarm Intelligence Algorithm. 2021 International Conference on Computational Intelligence and Computing Applications (ICCICA). :1—7.
In the Swarm Intelligence domain, the firefly algorithm(s) is the most significant algorithm applied in most all optimization areas. FA and variants are easily understood and implemented. FA is capable of solving different domain problems. For solving diverse range of engineering problems requires modified FA or Hybrid FA algorithms, but it is possible additional scope of improvement. In recent times swarm intelligence based intelligent optimization algorithms have been used for Research purposes. FA is one of most important intelligence Swarm algorithm that can be applied for the problems of Global optimization. FA algorithm is capable of achieving best results for complicated issues. In this research study we have discussed and different characteristics of FA and presented brief Review of FA. Along with other metahauristic algorithm we have discussed FA algorithm’s different variant like multi objective, and hybrid. The applications of firefly algorithm are bestowed. The aim of the paper is to give future direction for research in FA.
2021-12-20
Wang, Yinuo, Liu, Shujuan, Zhou, Jingyuan, Sun, Tengxuan.  2021.  Particle Filtering Based on Biome Intelligence Algorithm. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :156–161.
Particle filtering is an indispensable method for non-Gaussian state estimation, but it has some problems, such as particle degradation and requiring a large number of particles to ensure accuracy. Biota intelligence algorithms led by Cuckoo (CS) and Firefly (FA) have achieved certain results after introducing particle filtering, respectively. This paper respectively in the two kinds of bionic algorithm convergence factor and adaptive step length and random mobile innovation, seized the cuckoo algorithm (CS) in the construction of the initial value and the firefly algorithm (FA) in the iteration convergence advantages, using the improved after the update mechanism of cuckoo algorithm optimizing the initial population, and will be updated after optimization way of firefly algorithm combined with particle filter. Experimental results show that this method can ensure the diversity of particles and greatly reduce the number of particles needed for prediction while improving the filtering accuracy.
2018-04-11
Nandhini, M., Priya, P..  2017.  A Hybrid Routing Algorithm for Secure Environmental Monitoring System in WSN. 2017 International Conference on Communication and Signal Processing (ICCSP). :1061–1065.

Wireless sensor networks are the most prominent set of recently made sensor nodes. They play a numerous role in many applications like environmental monitoring, agriculture, Structural and industrial monitoring, defense applications. In WSN routing is one of the absolutely requisite techniques. It enhance the network lifetime. This can be gives additional priority and system security by using bio inspired algorithm. The combination of bio inspired algorithms and routing algorithms create a way to easy data transmission and improves network lifetime. We present a new metaheuristic hybrid algorithm namely firefly algorithm with Localizability aided localization routing protocol for encircle monitoring in wireless area. This algorithm entirely covers the wireless sensor area by localization process and clumping the sensor nodes with the use of LAL (Localizability Aided Localization) users can minimize the time latency, packet drop and packet loss compared to traditional methods.

2017-03-08
Santra, N., Biswas, S., Acharyya, S..  2015.  Neural modeling of Gene Regulatory Network using Firefly algorithm. 2015 IEEE UP Section Conference on Electrical Computer and Electronics (UPCON). :1–6.

Genes, proteins and other metabolites present in cellular environment exhibit a virtual network that represents the regulatory relationship among its constituents. This network is called Gene Regulatory Network (GRN). Computational reconstruction of GRN reveals the normal metabolic pathway as well as disease motifs. Availability of microarray gene expression data from normal and diseased tissues makes the job easier for computational biologists. Reconstruction of GRN is based on neural modeling. Here we have used discrete and continuous versions of a meta-heuristic algorithm named Firefly algorithm for structure and parameter learning of GRNs respectively. The discrete version for this problem is proposed by us and it has been applied to explore the discrete search space of GRN structure. To evaluate performance of the algorithm, we have used a widely used synthetic GRN data set. The algorithm shows an accuracy rate above 50% in finding GRN. The accuracy level of the performance of Firefly algorithm in structure and parameter optimization of GRN is promising.

Li, Xiao-Ke, Gu, Chun-Hua, Yang, Ze-Ping, Chang, Yao-Hui.  2015.  Virtual machine placement strategy based on discrete firefly algorithm in cloud environments. 2015 12th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :61–66.

Because of poor performance of heuristic algorithms on virtual machine placement problem in cloud environments, a multi-objective constraint optimization model of virtual machine placement is presented, which taking energy consumption and resource wastage as the objective. We solve the model based on the proposed discrete firefly algorithm. It takes firefly's location as the placement result, brightness as the objective value. Its movement strategy makes darker fireflies move to brighter fireflies in solution space. The continuous position after movement is discretized by the proposed discrete strategy. In order to speed up the search for solution, the local search mechanism for the optimal solution is introduced. The experimental results in OpenStack cloud platform show that the proposed algorithm makes less energy consumption and resource wastage compared with other algorithms.