Biblio
Software Defined Networking (SDN) is an emerging technology, which provides the flexibility in communicating among network. Software Defined Network features separation of the data forwarding plane from the control plane which includes controller, resulting centralized network. Due to centralized control, the network becomes more dynamic, and resources are managed efficiently and cost-effectively. Network Virtualization is transformation of network from hardware-based to software-based. Network Function Virtualization will permit implementation, adaptable provisioning, and even management of functions virtually. The use of virtualization of SDN networks permits network to strengthen the features of SDN and virtualization of NFV and has for that reason has attracted notable research awareness over the last few years. SDN platform introduces network security challenges. The network becomes vulnerable when a large number of requests is encapsulated inside packet\_in messages and passed to controller from switch for instruction, if it is not recognized by existing flow entry rules. which will limit the resources and become a bottleneck for the entire network leading to DDoS attack. It is necessary to have quick provisional methods to prevent the switches from breaking down. To resolve this problem, the researcher develops a mechanism that detects and mitigates flood attacks. This paper provides a comprehensive survey which includes research relating frameworks which are utilized for detecting attack and later mitigation of flood DDoS attack in Software Defined Network (SDN) with the help of NFV.
Cryptojacking (also called malicious cryptocurrency mining or cryptomining) is a new threat model using CPU resources covertly “mining” a cryptocurrency in the browser. The impact is a surge in CPU Usage and slows the system performance. In this research, in-browsercryptojacking mitigation has been built as an extension in Google Chrome using Taint analysis method. The method used in this research is attack modeling with abuse case using the Man-In-The-Middle (MITM) attack as a testing for mitigation. The proposed model is designed so that users will be notified if a cryptojacking attack occurs. Hence, the user is able to check the script characteristics that run on the website background. The results of this research show that the taint analysis is a promising method to mitigate cryptojacking attacks. From 100 random sample websites, the taint analysis method can detect 19 websites that are infcted by cryptojacking.
Content Delivery Networks(CDN) is a standout amongst the most encouraging innovations that upgrade performance for its clients' websites by diverting web demands from browsers to topographically dispersed CDN surrogate nodes. However, due to the variable nature of CDN, it suffers from various security and resource allocation issues. The most common attack which is used to bring down a whole network as well as CDN without even finding a loophole in the security is DDoS. In this proposal, we proposed a distributed virtual honeypot model for diminishing DDoS attacks and prevent intrusion in securing CDN. Honeypots are specially utilized to imitate the primary server with the goal that the attack is alleviated to the fake rather than the main server. Our proposed layer based model utilizes honeypot to be more effective reducing the cost of the system as well as maintaining the smooth delivery in geographically dispersed servers without performance degradation.
With the rapid development of radio detection and wireless communication, narrowband radio-frequency interference (NB-RFI) is a serious threat for GNSS-R (global navigation satellite systems - reflectometry) receivers. However, interferometric GNSS-R (iGNSS-R) is more prone to the NB-RFIs than conventional GNSS-R (cGNSS-R), due to wider bandwidth and unclean replica. Therefore, there is strong demand of detecting and mitigating NB-RFIs for GNSS-R receivers, especially iGNSS-R receivers. Hence, focusing on working with high sampling rate and simplifying the fixed-point implementation on FPGA, this paper proposes a system design exploiting cascading IIR band-stop filters (BSFs) to suppress NB-RFIs. Furthermore, IIR BSF compared with IIR notch filter (NF) and IIR band-pass filter (BPF) is the merely choice that is able to mitigate both white narrowband interference (WNBI) and continuous wave interference (CWI) well. Finally, validation and evaluation are conducted, and then it is indicated that the system design can detect NB-RFIs and suppress WNBI and CWI effectively, which improves the signal-to-noise ratio (SNR) of the Delay-Doppler map (DDM).
This research aims to identify some vulnerabilities of advanced persistent threat (APT) attacks using multiple simulated attacks in a virtualized environment. Our experimental study shows that while updating the antivirus software and the operating system with the latest patches may help in mitigating APTs, APT threat vectors could still infiltrate the strongest defenses. Accordingly, we highlight some critical areas of security concern that need to be addressed.
There has been a growing spate of Cyber attacks targeted at different corporate enterprises and systems across the globe. The scope of these attacks spans from small scale (grid and control system manipulation, domestic meter cyber hacking etc) to large scale distributed denial of service attacks (DDoSA) in enterprise networks. The effect of hacking on control systems through distributed control systems (DCS) using communication protocols on vulnerable home area networks (HANs) and neighborhood area networks (NANs) is terrifying. To meet the current security requirements, a new security network is proposed called Smart grid convoluted network (SGCN). With SGCN, the basic activities of data processing, monitoring and query requests are implemented outside the grid using Fog computing layer-3 devices (gatekeepers). A cyber monitor agent that leverages a reliable end-to end-communication network to secure the systems components on the grid is employed. Cyber attacks which affects the computational requirements of SG applications is mitigated by using a Fourier predictive cyber monitor (FPCM). The network uses flexible resources with loopback services shared across the network. Serial parallelism and efficient bandwidth provisioning are used by the locally supported Fog nodes within the SG cloud space. For services differentiation, SGCN employed secure communication between its various micro-grids as well as its metering front-ends. With the simulated traffic payload extraction trend (STPET), SGCN promises hard time for hackers and malicious malwares. While the work guarantees security for SGs, reliability is still an open issue due to the complexity of SG architecture. In conclusion, the future of the Cyber security in SGs must employ the concept of Internet of Everything (IoE), Malware predictive analytics and Fog layers on existing SG prototypes for optimal security benefits.
Cybercrimes today are focused over returns, especially in the form of monetary returns. In this paper - through a literature study and conducting interviews for the people victimized by ransomware and a survey with random set of victimized and non-victimized by ransomware - conclusions about the dependence of ransomware on demographics like age and education areshown. Increasing threats due to ease of transfer of ransomware through internet arealso discussed. Finally, low level awarenessamong company professionals is confirmed and reluctance to payment on being a victim is found as a common trait.
In cyberspace, availability of the resources is the key component of cyber security along with confidentiality and integrity. Distributed Denial of Service (DDoS) attack has become one of the major threats to the availability of resources in computer networks. It is a challenging problem in the Internet. In this paper, we present a detailed study of DDoS attacks on the Internet specifically the attacks due to protocols vulnerabilities in the TCP/IP model, their countermeasures and various DDoS attack mechanisms. We thoroughly review DDoS attacks defense and analyze the strengths and weaknesses of different proposed mechanisms.
The need to keep an attacker oblivious of an attack mitigation effort is a very important component of a defense against denial of services (DoS) and distributed denial of services (DDoS) attacks because it helps to dissuade attackers from changing their attack patterns. Conceptually, DDoS mitigation can be achieved by two components. The first is a decoy server that provides a service function or receives attack traffic as a substitute for a legitimate server. The second is a decoy network that restricts attack traffic to the peripheries of a network, or which reroutes attack traffic to decoy servers. In this paper, we propose the use of a two-stage map table extension Locator/ID Separation Protocol (LISP) to realize a decoy network. We also describe and demonstrate how LISP can be used to implement an oblivious DDoS mitigation mechanism by adding a simple extension on the LISP MapServer. Together with decoy servers, this method can terminate DDoS traffic on the ingress end of an LISP-enabled network. We verified the effectiveness of our proposed mechanism through simulated DDoS attacks on a simple network topology. Our evaluation results indicate that the mechanism could be activated within a few seconds, and that the attack traffic can be terminated without incurring overhead on the MapServer.