Biblio
This paper proposes a software framework to embed the unit commitment problem into a power system dynamic simulator. A sub-hourly, mixed-integer linear programming Security Constrained Unit Commitment (SCUC) with a rolling horizon is utilized to account for the variations of the net load of the system. The SCUC is then included into time domain simulations to study the impact of the net-load variability and uncertainty on the dynamic behavior of the system using different scheduling time periods. A case study based on the 39-bus system illustrates the features of the proposed software framework.
In order to meet the demand of electrical energy by consumers, utilities have to maintain the security of the system. This paper presents a design of the Microgrid Central Energy Management System (MCEMS). It will plan operation of the system one-day advance. The MCEMS will adjust itself during operation if a fault occurs anywhere in the generation system. The proposed approach uses Dynamic Programming (DP) algorithm solves the Unit Commitment (UC) problem and at the same time enhances the security of power system. A case study is performed with ten subsystems. The DP is used to manage the operation of the subsystems and determines the UC on the situation demands. Faults are applied to the system and the DP corrects the UC problem with appropriate power sources to maintain reliability supply. The MATLAB software has been used to simulate the operation of the system.
This study proposes to apply an efficient formulation to solve the stochastic security-constrained generation capacity expansion planning (GCEP) problem using an improved method to directly compute the generalized generation distribution factors (GGDF) and the line outage distribution factors (LODF) in order to model the pre- and the post-contingency constraints based on the only application of the partial transmission distribution factors (PTDF). The classical DC-based formulation has been reformulated in order to include the security criteria solving both pre- and post-contingency constraints simultaneously. The methodology also takes into account the load uncertainty in the optimization problem using a two-stage multi-period model, and a clustering technique is used as well to reduce load scenarios (stochastic problem). The main advantage of this methodology is the feasibility to quickly compute the LODF especially with multiple-line outages (N-m). This idea could speed up contingency analyses and improve significantly the security-constrained analyses applied to GCEP problems. It is worth to mentioning that this approach is carried out without sacrificing optimality.
Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.
Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.
As a clean energy, wind power is massively utilized in net recent years, which significantly reduced the pollution emission created from unit. This article referred to the concept of energy-saving and emission reducing; built a multiple objective function with represent of the emission of CO2& SO2, the coal-fired from units and the lowest unit fees of commitment; Proposed a algorithm to improving NSGA-D (Non-dominated Sorting Genetic Algorithm-II) for the dynamic characteristics, consider of some constraint conditions such as the shortest operation and fault time and climbing etc.; Optimized and commitment discrete magnitude and Load distribution continuous quantity with the double-optimization strategy; Introduced the fuzzy satisfaction-maximizing method to reaching a decision for Pareto solution and also nested into each dynamic solution; Through simulation for 10 units of wind power, the result show that this method is an effective way to optimize the Multi-objective unit commitment modeling in wind power integrated system with Mixed-integer variable.