Biblio
Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.
Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.
The theory of robust control models the controller-disturbance interaction as a game where disturbance is nonstrategic. The proviso of a deliberately malicious (strategic) attacker should be considered to increase the robustness of infrastructure systems. This has become especially important since many IT systems supporting critical functionalities are vulnerable to exploits by attackers. While the usefulness of game theory methods for modeling cyber-security is well established in the literature, new game theoretic models of cyber-physical security are needed for deriving useful insights on "optimal" attack plans and defender responses, both in terms of allocation of resources and operational strategies of these players. This whitepaper presents some progress and challenges in using game-theoretic models for security of infrastructure networks. Main insights from the following models are presented: (i) Network security game on flow networks under strategic edge disruptions; (ii) Interdiction problem on distribution networks under node disruptions; (iii) Inspection game to monitor commercial non-technical losses (e.g. energy diversion); and (iv) Interdependent security game of networked control systems under communication failures. These models can be used to analyze the attacker-defender interactions in a class of cyber-physical security scenarios.
The need for increased surveillance due to increase in flight volume in remote or oceanic regions outside the range of traditional radar coverage has been fulfilled by the advent of space-based Automatic Dependent Surveillance — Broadcast (ADS-B) Surveillance systems. ADS-B systems have the capability of providing air traffic controllers with highly accurate real-time flight data. ADS-B is dependent on digital communications between aircraft and ground stations of the air route traffic control center (ARTCC); however these communications are not secured. Anyone with the appropriate capabilities and equipment can interrogate the signal and transmit their own false data; this is known as spoofing. The possibility of this type of attacks decreases the situational awareness of United States airspace. The purpose of this project is to design a secure transmission framework that prevents ADS-B signals from being spoofed. Three alternative methods of securing ADS-B signals are evaluated: hashing, symmetric encryption, and asymmetric encryption. Security strength of the design alternatives is determined from research. Feasibility criteria are determined by comparative analysis of alternatives. Economic implications and possible collision risk is determined from simulations that model the United State airspace over the Gulf of Mexico and part of the airspace under attack respectively. The ultimate goal of the project is to show that if ADS-B signals can be secured, the situational awareness can improve and the ARTCC can use information from this surveillance system to decrease the separation between aircraft and ultimately maximize the use of the United States airspace.