Visible to the public Biblio

Found 152 results

Filters: Keyword is Supply chains  [Clear All Filters]
2023-09-07
Jin, Bo, Zhou, Zheng, Long, Fei, Xu, Huan, Chen, Shi, Xia, Fan, Wei, Xiaoyan, Zhao, Qingyao.  2022.  Software Supply Chain Security of Power Industry Based on BAS Technology. 2022 International Conference on Artificial Intelligence of Things and Crowdsensing (AIoTCs). :556–561.
The rapid improvement of computer and network technology not only promotes the improvement of productivity and facilitates people's life, but also brings new threats to production and life. Cyberspace security has attracted more and more attention. Different from traditional cyberspace security, APT attacks on key networks or infrastructure, with the main goal of stealing intellectual property, confidential information or sabotage, seriously threatening the interests and security of governments, enterprises and scientific research institutions. Timely detection and blocking is particularly important. The purpose of this paper is to study the security of software supply chain in power industry based on BAS technology. The experimental data shows that Type 1 projects account for the least amount and Type 2 projects account for the highest proportion. Type 1 projects have high unit price contracts and high profits, but the number is small and the time for signing orders is long.
2023-06-30
Xu, Ruiyun, Wang, Zhanbo, Zhao, J. Leon.  2022.  A Novel Blockchain-Driven Framework for Deterring Fraud in Supply Chain Finance. 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :1000–1005.
Frauds in supply chain finance not only result in substantial loss for financial institutions (e.g., banks, trust company, private funds), but also are detrimental to the reputation of the ecosystem. However, such frauds are hard to detect due to the complexity of the operating environment in supply chain finance such as involvement of multiple parties under different agreements. Traditional instruments of financial institutions are time-consuming yet insufficient in countering fraudulent supply chain financing. In this study, we propose a novel blockchain-driven framework for deterring fraud in supply chain finance. Specifically, we use inventory financing in jewelry supply chain as an illustrative scenario. The blockchain technology enables secure and trusted data sharing among multiple parties due to its characteristics of immutability and traceability. Consequently, information on manufacturing, brand license, and warehouse status are available to financial institutions in real time. Moreover, we develop a novel rule-based fraud check module to automatically detect suspicious fraud cases by auditing documents shared by multiple parties through a blockchain network. To validate the effectiveness of the proposed framework, we employ agent-based modeling and simulation. Experimental results show that our proposed framework can effectively deter fraudulent supply chain financing as well as improve operational efficiency.
ISSN: 2577-1655
2023-06-09
Williams, Daniel, Clark, Chelece, McGahan, Rachel, Potteiger, Bradley, Cohen, Daniel, Musau, Patrick.  2022.  Discovery of AI/ML Supply Chain Vulnerabilities within Automotive Cyber-Physical Systems. 2022 IEEE International Conference on Assured Autonomy (ICAA). :93—96.
Steady advancement in Artificial Intelligence (AI) development over recent years has caused AI systems to become more readily adopted across industry and military use-cases globally. As powerful as these algorithms are, there are still gaping questions regarding their security and reliability. Beyond adversarial machine learning, software supply chain vulnerabilities and model backdoor injection exploits are emerging as potential threats to the physical safety of AI reliant CPS such as autonomous vehicles. In this work in progress paper, we introduce the concept of AI supply chain vulnerabilities with a provided proof of concept autonomous exploitation framework. We investigate the viability of algorithm backdoors and software third party library dependencies for applicability into modern AI attack kill chains. We leverage an autonomous vehicle case study for demonstrating the applicability of our offensive methodologies within a realistic AI CPS operating environment.
Dave, Madhavi.  2022.  Internet of Things Security and Forensics: Concern and Challenges for Inspecting Cyber Attacks. 2022 Second International Conference on Next Generation Intelligent Systems (ICNGIS). :1—6.
The Internet of Things is an emerging technology for recent marketplace. In IoT, the heterogeneous devices are connected through the medium of the Internet for seamless communication. The devices used in IoT are resource-constrained in terms of memory, power and processing. Due to that, IoT system is unable to implement hi-end security for malicious cyber-attacks. The recent era is all about connecting IoT devices in various domains like medical, agriculture, transport, power, manufacturing, supply chain, education, etc. and thus need to be prevented from attacks and analyzed after attacks for legal action. The legal analysis of IoT data, devices and communication is called IoT forensics which is highly indispensable for various types of attacks on IoT system. This paper will review types of IoT attacks and its preventive measures in cyber security. It will also help in ascertaining IoT forensics and its challenges in detail. This paper will conclude with the high requirement of cyber security in IoT domains with implementation of standard rules for IoT forensics.
Keller, Joseph, Paul, Shuva, Grijalva, Santiago, Mooney, Vincent J..  2022.  Experimental Setup for Grid Control Device Software Updates in Supply Chain Cyber-Security. 2022 North American Power Symposium (NAPS). :1—6.
Supply chain cyberattacks that exploit insecure third-party software are a growing concern for the security of the electric power grid. These attacks seek to deploy malicious software in grid control devices during the fabrication, shipment, installation, and maintenance stages, or as part of routine software updates. Malicious software on grid control devices may inject bad data or execute bad commands, which can cause blackouts and damage power equipment. This paper describes an experimental setup to simulate the software update process of a commercial power relay as part of a hardware-in-the-loop simulation for grid supply chain cyber-security assessment. The laboratory setup was successfully utilized to study three supply chain cyber-security use cases.
2023-05-12
Yu, Juan.  2022.  Research on Location Information and Privacy Protection Based on Big Data. 2022 International Conference on Industrial IoT, Big Data and Supply Chain (IIoTBDSC). :226–229.

In the context of big data era, in order to prevent malicious access and information leakage during data services, researchers put forward a location big data encryption method based on privacy protection in practical exploration. According to the problems arising from the development of information network in recent years, users often encounter the situation of randomly obtaining location information in the network environment, which not only threatens their privacy security, but also affects the effective transmission of information. Therefore, this study proposed the privacy protection as the core position of big data encryption method, must first clear position with large data representation and positioning information, distinguish between processing position information and the unknown information, the fuzzy encryption theory, dynamic location data regrouping, eventually build privacy protection as the core of the encryption algorithm. The empirical results show that this method can not only effectively block the intrusion of attack data, but also effectively control the error of position data encryption.

2023-04-14
Kandera, Branislav, Holoda, Šimon, Jančík, Marián, Melníková, Lucia.  2022.  Supply Chain Risks Assessment of selected EUROCONTROL’s surveillance products. 2022 New Trends in Aviation Development (NTAD). :86–89.
Cybersecurity is without doubt becoming a societal challenge. It even starts to affect sectors that were not considered to be at risk in the past because of their relative isolation. One of these sectors is aviation in general, and specifically air traffic management. Nowadays, the cyber security is one of the essential issues of current Air Traffic Systems. Compliance with the basic principles of cyber security is mandated by European Union law as well as the national law. Therefore, EUROCONTROL as the provider of several tools or services (ARTAS, EAD, SDDS, etc.), is regularly conducting various activities, such as the cyber-security assessments, penetration testing, supply chain risk assessment, in order to maintain and improve persistence of the products against the cyber-attacks.
Yuvaraj, D., Anitha, M, Singh, Brijesh, Karyemsetty, Nagarjuna, Krishnamoorthy, R., Arun, S..  2022.  Systematic Review of Security Authentication based on Block Chain. 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC). :768–771.
One of the fifth generation’s most promising solutions for addressing the network system capacity issue is the ultra-dense network. However, a new problem arises because the user equipment secure access is made up of access points that are independent, transitory, and dynamic. The APs are independent and equal in this. It is possible to think of it as a decentralized access network. The access point’s coverage is less than the standard base stations. The user equipment will interface with access points more frequently as it moves, which is a problem. The current 4G Authentication and Key Agreement method, however, is unable to meet this need for quick and frequent authentication. This study means to research how blockchain innovation is being utilized in production network the executives, as well as its forthcoming purposes and arising patterns. To more readily comprehend the direction of important exploration and illuminate the benefits, issues, and difficulties in the blockchain-production network worldview, a writing overview and a logical evaluation of the current examination on blockchain-based supply chains were finished. Multifaceted verification strategies have as of late been utilized as possible guards against blockchain attacks. To further develop execution, scatter administration, and mechanize processes, inventory network tasks might be upset utilizing blockchain innovation
Zhang, Lei, Zhou, Jian, Ma, Yizhong, Shen, Lijuan.  2022.  Sequential Topology Attack of Supply Chain Networks Based on Reinforcement Learning. 2022 International Conference on Cyber-Physical Social Intelligence (ICCSI). :744–749.
The robustness of supply chain networks (SCNs) against sequential topology attacks is significant for maintaining firm relationships and activities. Although SCNs have experienced many emergencies demonstrating that mixed failures exacerbate the impact of cascading failures, existing studies of sequential attacks rarely consider the influence of mixed failure modes on cascading failures. In this paper, a reinforcement learning (RL)-based sequential attack strategy is applied to SCNs with cascading failures that consider mixed failure modes. To solve the large state space search problem in SCNs, a deep Q-network (DQN) optimization framework combining deep neural networks (DNNs) and RL is proposed to extract features of state space. Then, it is compared with the traditional random-based, degree-based, and load-based sequential attack strategies. Simulation results on Barabasi-Albert (BA), Erdos-Renyi (ER), and Watts-Strogatz (WS) networks show that the proposed RL-based sequential attack strategy outperforms three existing sequential attack strategies. It can trigger cascading failures with greater influence. This work provides insights for effectively reducing failure propagation and improving the robustness of SCNs.
Michota, Alexandra, Polemi, Nineta.  2022.  A Supply Chain Service Cybersecurity Certification Scheme based on the Cybersecurity Act. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :382–387.
Since the provision of digital services in our days (e.g. container management, transport of COVID vaccinations or LNG) in most economic sectors (e.g. maritime, health, energy) involve national, EU and non-EU stakeholders compose complex Supply Chain Services (SCS). The security of the SCS is most important and it emphasized in the NIS 2 directive [3] and it is a shared responsibility of all stakeholders involved that will need to be compliant with a scheme. In this paper we present an overview of the proposed Cybersecurity Certification Scheme for Supply Chain Services (EUSCS) as proposed by the European Commission (EC) project CYRENE [1]. The EUSCS scheme covers all the three assurance levels defined in the Cybersecurity Act (CSA) [2] taking into consideration the criticality of SCS according to the NIS 2 directive [3], the ENISA Threat Landscape for Supply Chain Attacks [4] and the CYRENE extended online Information Security Management System (ISMS) that allows all SCS stakeholders to provide and access all information needed for certification purposes making the transition from current national schemes in the EU easier.
Hossain Faruk, Md Jobair, Tasnim, Masrura, Shahriar, Hossain, Valero, Maria, Rahman, Akond, Wu, Fan.  2022.  Investigating Novel Approaches to Defend Software Supply Chain Attacks. 2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :283–288.
Software supply chain attacks occur during the processes of producing software is compromised, resulting in vulnerabilities that target downstream customers. While the number of successful exploits is limited, the impact of these attacks is significant. Despite increased awareness and research into software supply chain attacks, there is limited information available on mitigating or architecting for these risks, and existing information is focused on singular and independent elements of the supply chain. In this paper, we extensively review software supply chain security using software development tools and infrastructure. We investigate the path that attackers find is least resistant followed by adapting and finding the next best way to complete an attack. We also provide a thorough discussion on how common software supply chain attacks can be prevented, preventing malicious hackers from gaining access to an organization's development tools and infrastructure including the development environment. We considered various SSC attacks on stolen code-sign certificates by malicious attackers and prevented unnoticed malware from passing by security scanners. We are aiming to extend our research to contribute to preventing software supply chain attacks by proposing novel techniques and frameworks.
Paul, Shuva, Chen, Yu-Cheng, Grijalva, Santiago, Mooney, Vincent John.  2022.  A Cryptographic Method for Defense Against MiTM Cyber Attack in the Electricity Grid Supply Chain. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
Critical infrastructures such as the electricity grid can be severely impacted by cyber-attacks on its supply chain. Hence, having a robust cybersecurity infrastructure and management system for the electricity grid is a high priority. This paper proposes a cyber-security protocol for defense against man-in-the-middle (MiTM) attacks to the supply chain, which uses encryption and cryptographic multi-party authentication. A cyber-physical simulator is utilized to simulate the power system, control system, and security layers. The correctness of the attack modeling and the cryptographic security protocol against this MiTM attack is demonstrated in four different attack scenarios.
ISSN: 2472-8152
2023-03-17
Cherneva, Vanya, Trahan, Jerry L..  2022.  2P-mtOTP: A Secure, Two-Party, Ownership Transfer Protocol for Multiple RFID Tags based on Quadratic Residues. 2022 IEEE International Conference on RFID (RFID). :29–34.
Radio Frequency Identification (RFID) improves the efficiency of managing assets in supply chain applications throughout an entire life cycle or while in transport. Transfer of ownership of RFID-tagged items involves replacing information authorizing the old owner with information authorizing the new owner. In this work, we present a two-party, multiple tag, single-owner protocol for ownership transfer: 2P-mtOTP. This two-party protocol depends only on the communication among the two owners and the tags. Further, 2P-mtOTP is robust to attacks on its security, and it preserves the privacy of the owners and tags. We analyze our work in comparison to recent ownership transfer protocols in terms of security, privacy, and efficiency.
ISSN: 2573-7635
2023-02-17
Ferrell, Uma D., Anderegg, Alfred H. Andy.  2022.  Holistic Assurance Case for System-of-Systems. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). :1–9.
Aviation is a highly sophisticated and complex System-of-Systems (SoSs) with equally complex safety oversight. As novel products with autonomous functions and interactions between component systems are adopted, the number of interdependencies within and among the SoS grows. These interactions may not always be obvious. Understanding how proposed products (component systems) fit into the context of a larger SoS is essential to promote the safe use of new as well as conventional technology.UL 4600, is a Standard for Safety for the Evaluation of Autonomous Products specifically written for completely autonomous Load vehicles. The goal-based, technology-neutral features of this standard make it adaptable to other industries and applications.This paper, using the philosophy of UL 4600, gives guidance for creating an assurance case for products in an SoS context. An assurance argument is a cogent structured argument concluding that an autonomous aircraft system possesses all applicable through-life performance and safety properties. The assurance case process can be repeated at each level in the SoS: aircraft, aircraft system, unmodified components, and modified components. The original Equipment Manufacturer (OEM) develops the assurance case for the whole aircraft envisioned in the type certification process. Assurance cases are continuously validated by collecting and analyzing Safety Performance Indicators (SPIs). SPIs provide predictive safety information, thus offering an opportunity to improve safety by preventing incidents and accidents. Continuous validation is essential for risk-based approval of autonomously evolving (dynamic) systems, learning systems, and new technology. System variants, derivatives, and components are captured in a subordinate assurance case by their developer. These variants of the assurance case inherently reflect the evolution of the vehicle-level derivatives and options in the context of their specific target ecosystem. These subordinate assurance cases are nested under the argument put forward by the OEM of components and aircraft, for certification credit.It has become a common practice in aviation to address design hazards through operational mitigations. It is also common for hazards noted in an aircraft component system to be mitigated within another component system. Where a component system depends on risk mitigation in another component of the SoS, organizational responsibilities must be stated explicitly in the assurance case. However, current practices do not formalize accounting for these dependencies by the parties responsible for design; consequently, subsequent modifications are made without the benefit of critical safety-related information from the OEMs. The resulting assurance cases, including 3rd party vehicle modifications, must be scrutinized as part of the holistic validation process.When changes are made to a product represented within the assurance case, their impact must be analyzed and reflected in an updated assurance case. An OEM can facilitate this by integrating affected assurance cases across their customer’s supply chains to ensure their validity. The OEM is expected to exercise the sphere-of-control over their product even if it includes outsourced components. Any organization that modifies a product (with or without assurance argumentation information from other suppliers) is accountable for validating the conditions for any dependent mitigations. For example, the OEM may manage the assurance argumentation by identifying requirements and supporting SPI that must be applied in all component assurance cases. For their part, component assurance cases must accommodate all spheres-of-control that mitigate the risks they present in their respective contexts. The assurance case must express how interdependent mitigations will collectively assure the outcome. These considerations are much more than interface requirements and include explicit hazard mitigation dependencies between SoS components. A properly integrated SoS assurance case reflects a set of interdependent systems that could be independently developed..Even in this extremely interconnected environment, stakeholders must make accommodations for the independent evolution of products in a manner that protects proprietary information, domain knowledge, and safety data. The collective safety outcome for the SoS is based on the interdependence of mitigations by each constituent component and could not be accomplished by any single component. This dependency must be explicit in the assurance case and should include operational mitigations predicated on people and processes.Assurance cases could be used to gain regulatory approval of conventional and new technology. They can also serve to demonstrate consistency with a desired level of safety, especially in SoSs whose existing standards may not be adequate. This paper also provides guidelines for preserving alignment between component assurance cases along a product supply chain, and the respective SoSs that they support. It shows how assurance is a continuous process that spans product evolution through the monitoring of interdependent requirements and SPI. The interdependency necessary for a successful assurance case encourages stakeholders to identify and formally accept critical interconnections between related organizations. The resulting coordination promotes accountability for safety through increased awareness and the cultivation of a positive safety culture.
ISSN: 2155-7209
Khan, Muhammad Maaz Ali, Ehabe, Enow Nkongho, Mailewa, Akalanka B..  2022.  Discovering the Need for Information Assurance to Assure the End Users: Methodologies and Best Practices. 2022 IEEE International Conference on Electro Information Technology (eIT). :131–138.

The use of software to support the information infrastructure that governments, critical infrastructure providers and businesses worldwide rely on for their daily operations and business processes is gradually becoming unavoidable. Commercial off-the shelf software is widely and increasingly used by these organizations to automate processes with information technology. That notwithstanding, cyber-attacks are becoming stealthier and more sophisticated, which has led to a complex and dynamic risk environment for IT-based operations which users are working to better understand and manage. This has made users become increasingly concerned about the integrity, security and reliability of commercial software. To meet up with these concerns and meet customer requirements, vendors have undertaken significant efforts to reduce vulnerabilities, improve resistance to attack and protect the integrity of the products they sell. These efforts are often referred to as “software assurance.” Software assurance is becoming very important for organizations critical to public safety and economic and national security. These users require a high level of confidence that commercial software is as secure as possible, something only achieved when software is created using best practices for secure software development. Therefore, in this paper, we explore the need for information assurance and its importance for both organizations and end users, methodologies and best practices for software security and information assurance, and we also conducted a survey to understand end users’ opinions on the methodologies researched in this paper and their impact.

ISSN: 2154-0373

2023-02-03
Saha, Akashdeep, Chatterjee, Urbi, Mukhopadhyay, Debdeep, Chakraborty, Rajat Subhra.  2022.  DIP Learning on CAS-Lock: Using Distinguishing Input Patterns for Attacking Logic Locking. 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). :688–693.
The globalization of the integrated circuit (IC) manufacturing industry has lured the adversary to come up with numerous malicious activities in the IC supply chain. Logic locking has risen to prominence as a proactive defense strategy against such threats. CAS-Lock (proposed in CHES'20), is an advanced logic locking technique that harnesses the concept of single-point function in providing SAT-attack resiliency. It is claimed to be powerful and efficient enough in mitigating existing state-of-the-art attacks against logic locking techniques. Despite the security robustness of CAS-Lock as claimed by the authors, we expose a serious vulnerability and by exploiting the same we devise a novel attack algorithm against CAS-Lock. The proposed attack can not only reveal the correct key but also the exact AND/OR structure of the implemented CAS-Lock design along with all the key gates utilized in both the blocks of CAS-Lock. It simply relies on the externally observable Distinguishing Input Patterns (DIPs) pertaining to a carefully chosen key simulation of the locked design without the requirement of structural analysis of any kind of the locked netlist. Our attack is successful against various AND/OR cascaded-chain configurations of CAS-Lock and reports 100% success rate in recovering the correct key. It has an attack complexity of \$\textbackslashmathcalO(m)\$, where \$m\$ denotes the number of DIPs obtained for an incorrect key simulation.
ISSN: 1558-1101
2023-01-13
Collini, Luca, Karri, Ramesh, Pilato, Christian.  2022.  A Composable Design Space Exploration Framework to Optimize Behavioral Locking. 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). :1359—1364.
Globalization of the integrated circuit (IC) supply chain exposes designs to security threats such as reverse engineering and intellectual property (IP) theft. Designers may want to protect specific high-level synthesis (HLS) optimizations or micro-architectural solutions of their designs. Hence, protecting the IP of ICs is essential. Behavioral locking is an approach to thwart these threats by operating at high levels of abstraction instead of reasoning on the circuit structure. Like any security protection, behavioral locking requires additional area. Existing locking techniques have a different impact on security and overhead, but they do not explore the effects of alternatives when making locking decisions. We develop a design-space exploration (DSE) framework to optimize behavioral locking for a given security metric. For instance, we optimize differential entropy under area or key-bit constraints. We define a set of heuristics to score each locking point by analyzing the system dependence graph of the design. The solution yields better results for 92% of the cases when compared to baseline, state-of-the-art (SOTA) techniques. The approach has results comparable to evolutionary DSE while requiring 100× to 400× less computational time.
2023-01-05
Saha, Sujan Kumar, Mbongue, Joel Mandebi, Bobda, Christophe.  2022.  Metrics for Assessing Security of System-on-Chip. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :113—116.
Due to the increasing complexity of modern hetero-geneous System-on-Chips (SoC) and the growing vulnerabilities, security risk assessment and quantification is required to measure the trustworthiness of a SoC. This paper describes a systematic approach to model the security risk of a system for malicious hardware attacks. The proposed method uses graph analysis to assess the impact of an attack and the Common Vulnerability Scoring System (CVSS) is used to quantify the security level of the system. To demonstrate the applicability of the proposed metric, we consider two open source SoC benchmarks with different architectures. The overall risk is calculated using the proposed metric by computing the exploitability and impact of attack on critical components of a SoC.
Li, Yue, Zhang, Yunjuan.  2022.  Design of Smart Risk Assessment System for Agricultural Products and Food Safety Inspection Based on Multivariate Data Analysis. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). :1206—1210.
Design of smart risk assessment system for the agricultural products and the food safety inspection based on multivariate data analysis is studied in this paper. The designed quality traceability system also requires the collaboration and cooperation of various companies in the supply chain, and a unified database, including agricultural product identification system, code system and security status system, is required to record in detail the trajectory and status of agricultural products in the logistics chain. For the improvement, the multivariate data analysis is combined. Hadoop cannot be used on hardware with high price and high reliability. Even for groups with high probability of the problems, HDFS will continue to use when facing problems, and at the same time. Hence, the core model of HDFS is applied into the system. In the verification part, the analytic performance is simulated.
Tzoneva, Albena, Momcheva, Galina, Stoyanov, Borislav.  2022.  Vendor Cybersecurity Risk Assessment in an Autonomous Mobility Ecosystem. 2022 10th International Scientific Conference on Computer Science (COMSCI). :1—7.
Vendor cybersecurity risk assessment is of critical importance to smart city infrastructure and sustainability of the autonomous mobility ecosystem. Lack of engagement in cybersecurity policies and process implementation by the tier companies providing hardware or services to OEMs within this ecosystem poses a significant risk to not only the individual companies but to the ecosystem overall. The proposed quantitative method of estimating cybersecurity risk allows vendors to have visibility to the financial risk associated with potential threats and to consequently allocate adequate resources to cybersecurity. It facilitates faster implementation of defense measures and provides a useful tool in the vendor selection process. The paper focuses on cybersecurity risk assessment as a critical part of the overall company mission to create a sustainable structure for maintaining cybersecurity health. Compound cybersecurity risk and impact on company operations as outputs of this quantitative analysis present a unique opportunity to strategically plan and make informed decisions towards acquiring a reputable position in a sustainable ecosystem. This method provides attack trees and assigns a risk factor to each vendor thus offering a competitive advantage and an insight into the supply chain risk map. This is an innovative way to look at vendor cybersecurity posture. Through a selection of unique industry specific parameters and a modular approach, this risk assessment model can be employed as a tool to navigate the supply base and prevent significant financial cost. It generates synergies within the connected vehicle ecosystem leading to a safe and sustainable economy.
Meziani, Ahlem, Bourouis, Abdelhabib, Chebout, Mohamed Sedik.  2022.  Neutrosophic Data Analytic Hierarchy Process for Multi Criteria Decision Making: Applied to Supply Chain Risk Management. 2022 International Conference on Advanced Aspects of Software Engineering (ICAASE). :1—6.
Today’s Supply Chains (SC) are engulfed in a maelstrom of risks which arise mainly from uncertain, contradictory, and incomplete information. A decision-making process is required in order to detect threats, assess risks, and implements mitigation methods to address these issues. However, Neutrosophic Data Analytic Hierarchy Process (NDAHP) allows for a more realistic reflection of real-world problems while taking into account all factors that lead to effective risk assessment for Multi Criteria Decision-Making (MCDM). The purpose of this paper consists of an implementation of the NDAHP for MCDM aiming to identifying, ranking, prioritizing and analyzing risks without considering SC’ expert opinions. To that end, we proceed, first, for selecting and analyzing the most 23 relevant risk indicators that have a significant impact on the SC considering three criteria: severity, occurrence, and detection. After that, the NDAHP method is implemented and showcased, on the selected risk indicators, throw an illustrative example. Finally, we discuss the usability and effectiveness of the suggested method for the SCRM purposes.
Ezzahra, Essaber Fatima, Rachid, Benmoussa, Roland, De Guio.  2022.  Toward Lean Green Supply Chain Performance, A Risk Management Approach. 2022 14th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA). :1—6.
The purpose of this research work is to develop an approach based on risk management with a view to provide managers and decision-makers with assistance and appropriate guidelines to combine Lean and Green in a successful and integrated way. Risk cannot be managed if not well-identified; hence, a classification of supply chain risks in a Lean Green context was provided. Subsequently to risk identification an approach based on Weighted Product Method (WPM) was proposed; for risk assessment and prioritization, for its ease of use, flexibility and board adaptability. The output of this analysis provides visibility about organization's position toward desired performance and underlines crucial risks to be addressed which marks the starting point of the way to performance improvement. A case study was introduced to demonstrate the applicability and relevance of the developed framework.
Mefteh, Syrine, Rosdahl, Alexa L., Fagan, Kaitlin G., Kumar, Anirudh V..  2022.  Evaluating Chemical Supply Chain Criticality in the Water Treatment Industry: A Risk Analysis and Mitigation Model. 2022 Systems and Information Engineering Design Symposium (SIEDS). :73—78.
The assurance of the operability of surface water treatment facilities lies in many factors, but the factor with the largest impact on said assurance is the availability of the necessary chemicals. Facilities across the country vary in their processes and sources, but all require chemicals to produce potable water. The purpose of this project was to develop a risk assessment tool to determine the shortfalls and risks in the water treatment industry's chemical supply chain, which was used to produce a risk mitigation plan ensuring plant operability. To achieve this, a Fault Tree was built to address four main areas of concern: (i) market supply and demand, (ii) chemical substitutability, (iii) chemical transportation, and (iv) chemical storage process. Expert elicitation was then conducted to formulate a Failure Modes and Effects Analysis (FMEA) and develop Radar Charts, regarding the operations and management of specific plants. These tools were then employed to develop a final risk mitigation plan comprising two parts: (i) a quantitative analysis comparing and contrasting the risks of the water treatment plants under study and (ii) a qualitative recommendation for each of the plants-both culminating in a mitigation model on how to control and monitor chemical-related risks.
Kayouh, Nabil, Dkhissi, Btissam.  2022.  A decision support system for evaluating the logistical risks in Supply chains based on RPN factors and multi criteria decision making approach. 2022 14th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA). :1—6.
Logistics risk assessment in the supply chain is considered as one of the important topics that has attracted the attention of researchers in recent years; Companies that struggle to manage their logistical risks by not putting in place resilient strategies to mitigate them, may suffer from significant financial losses; The automotive industry is a vital sector for the Moroccan economy, the year 2020, the added-value of the automotive industry in Morocco is higher than that of the fertilizer (Fathi, n.d.) [1], This sector is considered the first exporter of the country. Our study will focuses on the assessment of the pure logistical risks in the moroccan automotive industry. Our main objective for this study is to assess the logistical risks which will allow us to put in place proactive and predictive resilient strategies for their mitigation.
Bansal, Lakshya, Chaurasia, Shefali, Sabharwal, Munish, Vij, Mohit.  2022.  Blockchain Integration with end-to-end traceability in the Food Supply Chain. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1152—1156.
Food supply chain is a complex but necessary food production arrangement needed by the global community to maintain sustainability and food security. For the past few years, entities being a part of the food processing system have usually taken food supply chain for granted, they forget that just one disturbance in the chain can lead to poisoning, scarcity, or increased prices. This continually affects the vulnerable among society, including impoverished individuals and small restaurants/grocers. The food supply chain has been expanded across the globe involving many more entities, making the supply chain longer and more problematic making the traditional logistics pattern unable to match the expectations of customers. Food supply chains involve many challenges like lack of traceability and communication, supply of fraudulent food products and failure in monitoring warehouses. Therefore there is a need for a system that ensures authentic information about the product, a reliable trading mechanism. In this paper, we have proposed a comprehensive solution to make the supply chain consumer centric by using Blockchain. Blockchain technology in the food industry applies in a mindful and holistic manner to verify and certify the quality of food products by presenting authentic information about the products from the initial stages. The problem formulation, simulation and performance analysis are also discussed in this research work.