Visible to the public Biblio

Found 152 results

Filters: Keyword is Supply chains  [Clear All Filters]
2022-02-25
Nguyen, Quang-Linh, Flottes, Marie-Lise, Dupuis, Sophie, Rouzeyre, Bruno.  2021.  On Preventing SAT Attack with Decoy Key-Inputs. 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :114–119.

The globalized supply chain in the semiconductor industry raises several security concerns such as IC overproduction, intellectual property piracy and design tampering. Logic locking has emerged as a Design-for-Trust countermeasure to address these issues. Original logic locking proposals provide a high degree of output corruption – i.e., errors on circuit outputs – unless it is unlocked with the correct key. This is a prerequisite for making a manufactured circuit unusable without the designer’s intervention. Since the introduction of SAT-based attacks – highly efficient attacks for retrieving the correct key from an oracle and the corresponding locked design – resulting design-based countermeasures have compromised output corruption for the benefit of better resilience against such attacks. Our proposed logic locking scheme, referred to as SKG-Lock, aims to thwart SAT-based attacks while maintaining significant output corruption. The proposed provable SAT-resilience scheme is based on the novel concept of decoy key-inputs. Compared with recent related works, SKG-Lock provides higher output corruption, while having high resistance to evaluated attacks.

2022-02-04
Xie, Xin, Liu, Xiulong, Guo, Song, Qi, Heng, Li, Keqiu.  2021.  A Lightweight Integrity Authentication Approach for RFID-enabled Supply Chains. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. :1—10.
Major manufacturers and retailers are increasingly using RFID systems in supply-chain scenarios, where theft of goods during transport typically causes significant economic losses for the consumer. Recent sample-based authentication methods attempt to use a small set of random sample tags to authenticate the integrity of the entire tag population, which significantly reduces the authentication time at the expense of slightly reduced reliability. The problem is that it still incurs extensive initialization overhead when writing the authentication information to all of the tags. This paper presents KTAuth, a lightweight integrity authentication approach to efficiently and reliably detect missing tags and counterfeit tags caused by stolen attacks. The competitive advantage of KTAuth is that it only requires writing the authentication information to a small set of deterministic key tags, offering a significant reduction in initialization costs. In addition, KTAuth strictly follows the C1G2 specifications and thus can be deployed on Commercial-Off-The-Shelf RFID systems. Furthermore, KTAuth proposes a novel authentication chain mechanism to verify the integrity of tags exclusively based on data stored on them. To evaluate the feasibility and deployability of KTAuth, we implemented a small-scale prototype system using mainstream RFID devices. Using the parameters achieved from the real experiments, we also conducted extensive simulations to evaluate the performance of KTAuth in large-scale RFID systems.
Xie, Jiagui, Li, Zhiping, Gao, Likun, Nie, Fanjie.  2021.  A Supply Chain Data Supervision System Based on Parent-Children Blockchain Structure. 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT). :833–842.
In the context of Industrial Internet logo analysis, this paper analyzes the feasibility and outstanding advantages of the blockchain technology applied to supply chain data supervision combining the pain spots of traditional supply chain management system and the technical superiority. Although blockchain technology has uprooted some deep-entrenched problems of supply chain data management system, it brings new issues to government supervision in the meanwhile. Upon the analysis of current development and the new problems of blockchain-based supply chain data management system, a new parent-children blockchain-based supply chain data supervision system is proposed, which targets to overcome the dilemma faced by the governmental regulation of supply chain. Firstly, with the characteristics of blockchain including decentralization, non-tampering and non-repudiation, the system can solve the problem puzzling the traditional database about untruthful and unreliable data, and has advantages in managing supply chain and realizing product traceability. The authenticity and reliability of data on the chain also make it easier for the government to investigate and affix the responsibility of vicious incidents. At the same time, the system adopts the parent-children chain structure and the storage mode combining on-chain and off-chain resources to overcome the contradiction between information disclosure requirements of the government and privacy protection requirements of enterprises, which can better meet the needs of various users. Moreover, the application of smart contracts can replace a large number of the manual work like repetitive data analysis, which can make analysis results more accurate and avoid human failure.
2022-01-11
Foster, Rita, Priest, Zach, Cutshaw, Michael.  2021.  Infrastructure eXpression for Codified Cyber Attack Surfaces and Automated Applicability. 2021 Resilience Week (RWS). :1–4.
The internal laboratory directed research and development (LDRD) project Infrastructure eXpression (IX) at the Idaho National Laboratory (INL), is based on codifying infrastructure to support automatic applicability to emerging cyber issues, enabling automated cyber responses, codifying attack surfaces, and analysis of cyber impacts to our nation's most critical infrastructure. IX uses the Structured Threat Information eXpression (STIX) open international standard version 2.1 which supports STIX Cyber Observable (SCO) to codify infrastructure characteristics and exposures. Using these codified infrastructures, STIX Relationship Objects (SRO) connect to STIX Domain Objects (SDO) used for modeling cyber threat used to create attack surfaces integrated with specific infrastructure. This IX model creates a shareable, actionable and implementable attack surface that is updateable with emerging threat or infrastructure modifications. Enrichment of cyber threat information includes attack patterns, indicators, courses of action, malware and threat actors. Codifying infrastructure in IX enables creation of software and hardware bill of materials (SBoM/HBoM) information, analysis of emerging cyber vulnerabilities including supply chain threat to infrastructure.
2021-12-21
Coufal\'ıková, Aneta, Klaban, Ivo, \v Slajs, Tomá\v s.  2021.  Complex Strategy against Supply Chain Attacks. 2021 International Conference on Military Technologies (ICMT). :1–5.
The risk of cyber-attack is omnipresent, there are lots of threat actors in the cyber field and the number of attacks increases every day. The paper defines currently the most discussed supply chain attacks, briefly summarizes significant events of successful supply chain attacks and outlines complex strategy leading to the prevention of such attacks; the strategy which can be used not only by civil organizations but governmental ones, too. Risks of supply chain attacks against the Czech army are taken into consideration and possible mitigations are suggested.
2021-07-27
Meadows, B., Edwards, N., Chang, S.-Y..  2020.  On-Chip Randomization for Memory Protection Against Hardware Supply Chain Attacks to DRAM. 2020 IEEE Security and Privacy Workshops (SPW). :171—180.
Dynamic Random Access Memory (DRAM) is widely used for data storage and, when a computer system is in operation, the DRAM can contain sensitive information such as passwords and cryptographic keys. Therefore, the DRAM is a prime target for hardware-based cryptanalytic attacks. These attacks can be performed in the supply chain to capture default key mechanisms enabling a later cyber attack or predisposition the system to remote effects. Two prominent attack classes against memory are the Cold Boot attack which recovers the data from the DRAM even after a supposed power-down and Rowhammer attack which violates memory integrity by influencing the stored bits to flip. In this paper, we propose an on-chip technique that obfuscates the memory addresses and data and provides a fast detect-response to defend against these hardware-based security attacks on DRAM. We advance the prior hardware security research by making two contributions. First, the key material is detected and erased before the Cold Boot attacker can extract the memory data. Second, our solution is on-chip and does not require nor depend on additional hardware or software which are open to additional supply chain attack vectors. We analyze the efficacy of our scheme through circuit simulation and compare the results to the previous mitigation approaches based on DRAM write operations. Our simulation and analysis results show that purging key information used for address and data randomization can be achieved much faster and with lower power than with typical DRAM write techniques used for sanitizing memory content. We demonstrate through circuit simulation of the key register design a technique that clears key information within 2.4ns which is faster by more than two orders magnitude compared to typical DRAM write operations for 180nm technology, and with a power consumption of 0.15 picoWatts.
2021-06-02
Sun, Weiqi, Li, Yuanlong, Shi, Liangren.  2020.  The Performance Evaluation and Resilience Analysis of Supply Chain Based on Logistics Network. 2020 39th Chinese Control Conference (CCC). :5772—5777.
With the development of globalization, more and more enterprises are involved in the supply chain network with increasingly complex structure. In this paper, enterprises and relations in the logistics network are abstracted as nodes and edges of the complex network. A graph model for a supply chain network to specified industry is constructed, and the Neo4j graph database is employed to store the graph data. This paper uses the theoretical research tool of complex network to model and analyze the supply chain, and designs a supply chain network evaluation system which include static and dynamic measurement indexes according to the statistical characteristics of complex network. In this paper both the static and dynamic resilience characteristics of the the constructed supply chain network are evaluated from the perspective of complex network. The numeric experimental simulations are conducted for validation. This research has practical and theoretical significance for enterprises to make strategies to improve the anti-risk capability of supply chain network based on logistics network information.
2021-03-29
DiMase, D., Collier, Z. A., Chandy, J., Cohen, B. S., D'Anna, G., Dunlap, H., Hallman, J., Mandelbaum, J., Ritchie, J., Vessels, L..  2020.  A Holistic Approach to Cyber Physical Systems Security and Resilience. 2020 IEEE Systems Security Symposium (SSS). :1—8.

A critical need exists for collaboration and action by government, industry, and academia to address cyber weaknesses or vulnerabilities inherent to embedded or cyber physical systems (CPS). These vulnerabilities are introduced as we leverage technologies, methods, products, and services from the global supply chain throughout a system's lifecycle. As adversaries are exploiting these weaknesses as access points for malicious purposes, solutions for system security and resilience become a priority call for action. The SAE G-32 Cyber Physical Systems Security Committee has been convened to address this complex challenge. The SAE G-32 will take a holistic systems engineering approach to integrate system security considerations to develop a Cyber Physical System Security Framework. This framework is intended to bring together multiple industries and develop a method and common language which will enable us to more effectively, efficiently, and consistently communicate a risk, cost, and performance trade space. The standard will allow System Integrators to make decisions utilizing a common framework and language to develop affordable, trustworthy, resilient, and secure systems.

Das, T., Eldosouky, A. R., Sengupta, S..  2020.  Think Smart, Play Dumb: Analyzing Deception in Hardware Trojan Detection Using Game Theory. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.
In recent years, integrated circuits (ICs) have become significant for various industries and their security has been given greater priority, specifically in the supply chain. Budgetary constraints have compelled IC designers to offshore manufacturing to third-party companies. When the designer gets the manufactured ICs back, it is imperative to test for potential threats like hardware trojans (HT). In this paper, a novel multi-level game-theoretic framework is introduced to analyze the interactions between a malicious IC manufacturer and the tester. In particular, the game is formulated as a non-cooperative, zero-sum, repeated game using prospect theory (PT) that captures different players' rationalities under uncertainty. The repeated game is separated into a learning stage, in which the defender learns about the attacker's tendencies, and an actual game stage, where this learning is used. Experiments show great incentive for the attacker to deceive the defender about their actual rationality by "playing dumb" in the learning stage (deception). This scenario is captured using hypergame theory to model the attacker's view of the game. The optimal deception rationality of the attacker is analytically derived to maximize utility gain. For the defender, a first-step deception mitigation process is proposed to thwart the effects of deception. Simulation results show that the attacker can profit from the deception as it can successfully insert HTs in the manufactured ICs without being detected.
2020-12-21
Neises, J., Moldovan, G., Walloschke, T., Popovici, B..  2020.  Trustworthiness in Supply Chains : A modular extensible Approach applied to Industrial IoT. 2020 Global Internet of Things Summit (GIoTS). :1–6.
Typical transactions in cross-company Industry 4.0 supply chains require a dynamically evaluable form of trustworthiness. Therefore, specific requirements on the parties involved, down to the machine level, for automatically verifiable operations shall facilitate the realization of the economic advantages of future flexible process chains in production. The core of the paper is a modular and extensible model for the assessment of trustworthiness in industrial IoT based on the Industrial Internet Security Framework of the Industrial Internet Consortium, which among other things defines five trustworthiness key characteristics of NIST. This is the starting point for a flexible model, which contains features as discussed in ISO/IEC JTC 1/AG 7 N51 or trustworthiness profiles as used in regulatory requirements. Specific minimum and maximum requirement parameters define the range of trustworthy operation. An automated calculation of trustworthiness in a dynamic environment based on an initial trust metric is presented. The evaluation can be device-based, connection-based, behaviour-based and context-based and thus become part of measurable, trustworthy, monitorable Industry 4.0 scenarios. Finally, the dynamic evaluation of automatable trust models of industrial components is illustrated based on the Multi-Vendor-Industry of the Horizon 2020 project SecureIoT. (grant agreement number 779899).
2020-11-09
Bose, S., Raikwar, M., Mukhopadhyay, D., Chattopadhyay, A., Lam, K..  2018.  BLIC: A Blockchain Protocol for Manufacturing and Supply Chain Management of ICS. 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1326–1335.
Blockchain technology has brought a huge paradigm shift in multiple industries, by integrating distributed ledger, smart contracts and consensus protocol under the same roof. Notable applications of blockchain include cryptocurrencies and large-scale multi-party transaction management systems. The latter fits very well into the domain of manufacturing and supply chain management for Integrated Circuits (IC), which, despite several advanced technologies, is vulnerable to malicious practices, such as overproduction, IP piracy and deleterious design modification to gain unfair advantages. To combat these threats, researchers have proposed several ideas like hardware metering, design obfuscation, split manufacturing and watermarking. In this paper, we show, how these issues can be complementarily dealt with using blockchain technology coupled with identity-based encryption and physical unclonable functions, for improved resilience against certain adversarial motives. As part of our proposed blockchain protocol, titled `BLIC', we propose an authentication mechanism to secure both active and passive IC transactions, and a composite consensus protocol designed for IC supply chains. We also present studies on the security, scalability, privacy and anonymity of the BLIC protocol.
2020-08-24
Yeboah-Ofori, Abel, Islam, Shareeful, Brimicombe, Allan.  2019.  Detecting Cyber Supply Chain Attacks on Cyber Physical Systems Using Bayesian Belief Network. 2019 International Conference on Cyber Security and Internet of Things (ICSIoT). :37–42.

Identifying cyberattack vectors on cyber supply chains (CSC) in the event of cyberattacks are very important in mitigating cybercrimes effectively on Cyber Physical Systems CPS. However, in the cyber security domain, the invincibility nature of cybercrimes makes it difficult and challenging to predict the threat probability and impact of cyber attacks. Although cybercrime phenomenon, risks, and treats contain a lot of unpredictability's, uncertainties and fuzziness, cyberattack detection should be practical, methodical and reasonable to be implemented. We explore Bayesian Belief Networks (BBN) as knowledge representation in artificial intelligence to be able to be formally applied probabilistic inference in the cyber security domain. The aim of this paper is to use Bayesian Belief Networks to detect cyberattacks on CSC in the CPS domain. We model cyberattacks using DAG method to determine the attack propagation. Further, we use a smart grid case study to demonstrate the applicability of attack and the cascading effects. The results show that BBN could be adapted to determine uncertainties in the event of cyberattacks in the CSC domain.

2020-07-30
Patnaik, Satwik, Ashraf, Mohammed, Sinanoglu, Ozgur, Knechtel, Johann.  2018.  Best of Both Worlds: Integration of Split Manufacturing and Camouflaging into a Security-Driven CAD Flow for 3D ICs. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1—8.

With the globalization of manufacturing and supply chains, ensuring the security and trustworthiness of ICs has become an urgent challenge. Split manufacturing (SM) and layout camouflaging (LC) are promising techniques to protect the intellectual property (IP) of ICs from malicious entities during and after manufacturing (i.e., from untrusted foundries and reverse-engineering by end-users). In this paper, we strive for “the best of both worlds,” that is of SM and LC. To do so, we extend both techniques towards 3D integration, an up-and-coming design and manufacturing paradigm based on stacking and interconnecting of multiple chips/dies/tiers. Initially, we review prior art and their limitations. We also put forward a novel, practical threat model of IP piracy which is in line with the business models of present-day design houses. Next, we discuss how 3D integration is a naturally strong match to combine SM and LC. We propose a security-driven CAD and manufacturing flow for face-to-face (F2F) 3D ICs, along with obfuscation of interconnects. Based on this CAD flow, we conduct comprehensive experiments on DRC-clean layouts. Strengthened by an extensive security analysis (also based on a novel attack to recover obfuscated F2F interconnects), we argue that entering the next, third dimension is eminent for effective and efficient IP protection.

Shey, James, Karimi, Naghmeh, Robucci, Ryan, Patel, Chintan.  2018.  Design-Based Fingerprinting Using Side-Channel Power Analysis for Protection Against IC Piracy. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :614—619.

Intellectual property (IP) and integrated circuit (IC) piracy are of increasing concern to IP/IC providers because of the globalization of IC design flow and supply chains. Such globalization is driven by the cost associated with the design, fabrication, and testing of integrated circuits and allows avenues for piracy. To protect the designs against IC piracy, we propose a fingerprinting scheme based on side-channel power analysis and machine learning methods. The proposed method distinguishes the ICs which realize a modified netlist, yet same functionality. Our method doesn't imply any hardware overhead. We specifically focus on the ability to detect minimal design variations, as quantified by the number of logic gates changed. Accuracy of the proposed scheme is greater than 96 percent, and typically 99 percent in detecting one or more gate-level netlist changes. Additionally, the effect of temperature has been investigated as part of this work. Results depict 95.4 percent accuracy in detecting the exact number of gate changes when data and classifier use the same temperature, while training with different temperatures results in 33.6 percent accuracy. This shows the effectiveness of building temperature-dependent classifiers from simulations at known operating temperatures.

Holland, Martin, Stjepandić, Josip, Nigischer, Christopher.  2018.  Intellectual Property Protection of 3D Print Supply Chain with Blockchain Technology. 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). :1—8.
Within “Industrie 4.0” approach 3D printing technology is characterized as one of the disruptive innovations. Conventional supply chains are replaced by value-added networks. The spatially distributed development of printed components, e.g. for the rapid delivery of spare parts, creates a new challenge when differentiating between “original part”, “copy” or “counterfeit” becomes necessary. This is especially true for safety-critical products. Based on these changes classic branded products adopt the characteristics of licensing models as we know them in the areas of software and digital media. This paper describes the use of digital rights management as a key technology for the successful transition to Additive Manufacturing methods and a key for its commercial implementation and the prevention of intellectual property theft. Risks will be identified along the process chain and solution concepts are presented. These are currently being developed by an 8-partner project named SAMPL (Secure Additive Manufacturing Platform).
2020-03-12
Gorodnichev, Mikhail G., Nazarova, Anastasia N., Moseva, Marina S..  2019.  Development of Platform for Confirming and Storing Supply Data Using Blockchain Technology. 2019 International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :182–185.

This article is devoted to the development of a platform for reliable storage of information on supplies based on blockchain technology. The article discusses the main approaches to the work of decentralized applications, as well as the main problems.

Liang, Shiaofang, Li, Mingchen, Li, Wenjing.  2019.  Research on Traceability Algorithm of Logistics Service Transaction Based on Blockchain. 2019 18th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). :186–189.

The traditional logistics transaction lacks a perfect traceability mechanism, and the data information's integrity and safety are not guaranteed in the existing traceability system. In order to solve the problem of main body responsibility caused by the participation of many stakeholders and the uncompleted supervision system in the process of logistics service transaction, This paper proposes a traceability algorithm for logistics service transactions based on blockchain. Based on the logistics service supply chain and alliance chain, the paper firstly investigates the traditional logistics service supply chain, analyzes the existing problems, and combines the structural characteristics of the blockchain to propose a decentralized new logistics service supply chain concept model based on blockchain. Then, using Globe sandara 1 to standardize the physical products and data circulating in the new logistics service supply chain, form unified and standard traceable data, and propose a multi-dimensional traceable data model based on logistics service supply chain. Based on the proposed model, combined with the business process of the logistics service supply chain and asymmetric encryption, a blockchain-based logistics service transaction traceability algorithm is designed. Finally, the simulation results show that the algorithm realizes the end-to-end traceability of the logistics service supply chain, and the service transaction is transparent while ensuring the integrity and security of the data.

Yousuf, Soha, Svetinovic, Davor.  2019.  Blockchain Technology in Supply Chain Management: Preliminary Study. 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :537–538.

Despite significant research, the supply chain management challenges still have a long way to go with respect to solving the issues such as management of product supply information, product lifecycle, transport history, etc. Given the recent rise of blockchain technology in various industrial sectors, our work explores the issues prevalent in each stage of the supply chain and checks their candidacy for the implementation using blockchain technology. The analysis is performed in terms of the characteristics of trust and decentralization with respect to forming a generalized framework. The main contribution of this work is to create a conceptual overview of the areas where blockchain integrates with supply chain management in order to benefit further research and development.

Kumar, Randhir, Tripathi, Rakesh.  2019.  Traceability of Counterfeit Medicine Supply Chain through Blockchain. 2019 11th International Conference on Communication Systems Networks (COMSNETS). :568–570.

The main issues with drug safety in the counterfeit medicine supply chain, are to do with how the drugs are initially manufactured. The traceability of right and active pharmaceutical ingredients during actual manufacture is a difficult process, so detecting drugs that do not contain the intended active ingredients can ultimately lead to end-consumer patient harm or even death. Blockchain's advanced features make it capable of providing a basis for complete traceability of drugs, from manufacturer to end consumer, and the ability to identify counterfeit-drug. This paper aims to address the issue of drug safety using Blockchain and encrypted QR(quick response) code security.

Zhang, Haibo, Nakamura, Toru, Sakurai, Kouichi.  2019.  Security and Trust Issues on Digital Supply Chain. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :338–343.

This exploratory investigation aims to discuss current status and challenges, especially in aspect of security and trust problems, of digital supply chain management system with applying some advanced information technologies, such as Internet of Things, cloud computing and blockchain, for improving various system performance and properties, i.e. transparency, visibility, accountability, traceability and reliability. This paper introduces the general histories and definitions, in terms of information science, of the supply chain and relevant technologies which have been applied or are potential to be applied on supply chain with purpose of lowering cost, facilitating its security and convenience. It provides a comprehensive review of current relative research work and industrial cases from several famous companies. It also illustrates requirements or performance of digital supply chain system, security management and trust issues. Finally, this paper concludes several potential or existing security issues and challenges which supply chain management is facing.

Wu, Hanqing, Cao, Jiannong, Yang, Yanni, Tung, Cheung Leong, Jiang, Shan, Tang, Bin, Liu, Yang, Wang, Xiaoqing, Deng, Yuming.  2019.  Data Management in Supply Chain Using Blockchain: Challenges and a Case Study. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1–8.

Supply chain management (SCM) is fundamental for gaining financial, environmental and social benefits in the supply chain industry. However, traditional SCM mechanisms usually suffer from a wide scope of issues such as lack of information sharing, long delays for data retrieval, and unreliability in product tracing. Recent advances in blockchain technology show great potential to tackle these issues due to its salient features including immutability, transparency, and decentralization. Although there are some proof-of-concept studies and surveys on blockchain-based SCM from the perspective of logistics, the underlying technical challenges are not clearly identified. In this paper, we provide a comprehensive analysis of potential opportunities, new requirements, and principles of designing blockchain-based SCM systems. We summarize and discuss four crucial technical challenges in terms of scalability, throughput, access control, data retrieval and review the promising solutions. Finally, a case study of designing blockchain-based food traceability system is reported to provide more insights on how to tackle these technical challenges in practice.

Gawanmeh, Amjad, Parvin, Sazia, Venkatraman, Sitalakshmi, de Souza-Daw, Tony, Kang, James, Kaspi, Samuel, Jackson, Joanna.  2019.  A Framework for Integrating Big Data Security Into Agricultural Supply Chain. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService). :191–194.

In the era of mass agriculture to keep up with the increasing demand for food production, advanced monitoring systems are required in order to handle several challenges such as perishable products, food waste, unpredictable supply variations and stringent food safety and sustainability requirements. The evolution of Internet of Things have provided means for collecting, processing, and communicating data associated with agricultural processes. This have opened several opportunities to sustain, improve productivity and reduce waste in every step in the food supply chain system. On the hand, this resulted in several new challenges, such as, the security of the data, recording and representation of data, providing real time control, reliability of the system, and dealing with big data. This paper proposes an architecture for security of big data in the agricultural supply chain management system. This can help in reducing food waste, increasing the reliability of the supply chain, and enhance the performance of the food supply chain system.

2020-02-26
Tychalas, Dimitrios, Keliris, Anastasis, Maniatakos, Michail.  2019.  LED Alert: Supply Chain Threats for Stealthy Data Exfiltration in Industrial Control Systems. 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS). :194–199.

Industrial Internet-of-Things has been touted as the next revolution in the industrial domain, offering interconnectivity, independence, real-time operation, and self-optimization. Integration of smart systems, however, bridges the gap between information and operation technology, creating new avenues for attacks from the cyber domain. The dismantling of this air-gap, in conjunction with the devices' long lifespan -in the range of 20-30 years-, motivates us to bring the attention of the community to emerging advanced persistent threats. We demonstrate a threat that bridges the air-gap by leaking data from memory to analog peripherals through Direct Memory Access (DMA), delivered as a firmware modification through the supply chain. The attack automatically adapts to a target device by leveraging the Device Tree and resides solely in the peripherals, completely transparent to the main CPU, by judiciously short-circuiting specific components. We implement this attack on a commercial Programmable Logic Controller, leaking information over the available LEDs. We evaluate the presented attack vector in terms of stealthiness, and demonstrate no observable overhead on both CPU performance and DMA transfer speed. Since traditional anomaly detection techniques would fail to detect this firmware trojan, this work highlights the need for industrial control system-appropriate techniques that can be applied promptly to installed devices.

2020-01-27
Xuefeng, He, Chi, Zhang, Yuewu, Jing, Xingzheng, Ai.  2019.  Risk Evaluation of Agricultural Product Supply Chain Based on BP Neural Network. 2019 16th International Conference on Service Systems and Service Management (ICSSSM). :1–8.

The potential risk of agricultural product supply chain is huge because of the complex attributes specific to it. Actually the safety incidents of edible agricultural product emerge frequently in recent years, which expose the fragility of the agricultural product supply chain. In this paper the possible risk factors in agricultural product supply chain is analyzed in detail, the agricultural product supply chain risk evaluation index system and evaluation model are established, and an empirical analysis is made using BP neural network method. The results show that the risk ranking of the simulated evaluation is consistent with the target value ranking, and the risk assessment model has a good generalization and extension ability, and the model has a good reference value for preventing agricultural product supply chain risk.

Salamai, Abdullah, Hussain, Omar, Saberi, Morteza.  2019.  Decision Support System for Risk Assessment Using Fuzzy Inference in Supply Chain Big Data. 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD IS). :248–253.

Currently, organisations find it difficult to design a Decision Support System (DSS) that can predict various operational risks, such as financial and quality issues, with operational risks responsible for significant economic losses and damage to an organisation's reputation in the market. This paper proposes a new DSS for risk assessment, called the Fuzzy Inference DSS (FIDSS) mechanism, which uses fuzzy inference methods based on an organisation's big data collection. It includes the Emerging Association Patterns (EAP) technique that identifies the important features of each risk event. Then, the Mamdani fuzzy inference technique and several membership functions are evaluated using the firm's data sources. The FIDSS mechanism can enhance an organisation's decision-making processes by quantifying the severity of a risk as low, medium or high. When it automatically predicts a medium or high level, it assists organisations in taking further actions that reduce this severity level.