Visible to the public Biblio

Filters: Keyword is Curve fitting  [Clear All Filters]
2021-02-22
Fang, S., Kennedy, S., Wang, C., Wang, B., Pei, Q., Liu, X..  2020.  Sparser: Secure Nearest Neighbor Search with Space-filling Curves. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :370–375.
Nearest neighbor search, a classic way of identifying similar data, can be applied to various areas, including database, machine learning, natural language processing, software engineering, etc. Secure nearest neighbor search aims to find nearest neighbors to a given query point over encrypted data without accessing data in plaintext. It provides privacy protection to datasets when nearest neighbor queries need to be operated by an untrusted party (e.g., a public server). While different solutions have been proposed to support nearest neighbor queries on encrypted data, these existing solutions still encounter critical drawbacks either in efficiency or privacy. In light of the limitations in the current literature, we propose a novel approximate nearest neighbor search solution, referred to as Sparser, by leveraging a combination of space-filling curves, perturbation, and Order-Preserving Encryption. The advantages of Sparser are twofold, strengthening privacy and improving efficiency. Specifically, Sparser pre-processes plaintext data with space-filling curves and perturbation, such that data is sparse, which mitigates leakage abuse attacks and renders stronger privacy. In addition to privacy enhancement, Sparser can efficiently find approximate nearest neighbors over encrypted data with logarithmic time. Through extensive experiments over real-world datasets, we demonstrate that Sparser can achieve strong privacy protection under leakage abuse attacks and minimize search time.
2019-05-01
Omorog, C. D., Gerardo, B. D., Medina, R. P..  2018.  Enhanced pseudorandom number generator based on Blum-Blum-Shub and elliptic curves. 2018 IEEE Symposium on Computer Applications Industrial Electronics (ISCAIE). :269–274.

Blum-Blum-Shub (BBS) is a less complex pseudorandom number generator (PRNG) that requires very large modulus and a squaring operation for the generation of each bit, which makes it computationally heavy and slow. On the other hand, the concept of elliptic curve (EC) point operations has been extended to PRNGs that prove to have good randomness properties and reduced latency, but exhibit dependence on the secrecy of point P. Given these pros and cons, this paper proposes a new BBS-ECPRNG approach such that the modulus is the product of two elliptic curve points, both primes of length, and the number of bits extracted per iteration is by binary fraction. We evaluate the algorithm performance by generating 1000 distinct sequences of 106bits each. The results were analyzed based on the overall performance of the sequences using the NIST standard statistical test suite. The average performance of the sequences was observed to be above the minimum confidence level of 99.7 percent and successfully passed all the statistical properties of randomness tests.

2018-05-16
Liren, Z., Xin, Y., Yang, P., Li, Z..  2017.  Magnetic performance measurement and mathematical model establishment of main core of magnetic modulator. 2017 13th IEEE International Conference on Electronic Measurement Instruments (ICEMI). :12–16.

In order to investigate the relationship and effect on the performance of magnetic modulator among applied DC current, excitation source, excitation loop current, sensitivity and induced voltage of detecting winding, this paper measured initial permeability, maximum permeability, saturation magnetic induction intensity, remanent magnetic induction intensity, coercivity, saturated magnetic field intensity, magnetization curve, permeability curve and hysteresis loop of main core 1J85 permalloy of magnetic modulator based on ballistic method. On this foundation, employ curve fitting tool of MATLAB; adopt multiple regression method to comprehensively compare and analyze the sum of squares due to error (SSE), coefficient of determination (R-square), degree-of-freedom adjusted coefficient of determination (Adjusted R-square), and root mean squared error (RMSE) of fitting results. Finally, establish B-H curve mathematical model based on the sum of arc-hyperbolic sine function and polynomial.

2018-03-26
Movahedi, Y., Cukier, M., Andongabo, A., Gashi, I..  2017.  Cluster-Based Vulnerability Assessment Applied to Operating Systems. 2017 13th European Dependable Computing Conference (EDCC). :18–25.

Organizations face the issue of how to best allocate their security resources. Thus, they need an accurate method for assessing how many new vulnerabilities will be reported for the operating systems (OSs) they use in a given time period. Our approach consists of clustering vulnerabilities by leveraging the text information within vulnerability records, and then simulating the mean value function of vulnerabilities by relaxing the monotonic intensity function assumption, which is prevalent among the studies that use software reliability models (SRMs) and nonhomogeneous Poisson process (NHPP) in modeling. We applied our approach to the vulnerabilities of four OSs: Windows, Mac, IOS, and Linux. For the OSs analyzed in terms of curve fitting and prediction capability, our results, compared to a power-law model without clustering issued from a family of SRMs, are more accurate in all cases we analyzed.

2017-03-08
Kaur, R., Singh, S..  2015.  Detecting anomalies in Online Social Networks using graph metrics. 2015 Annual IEEE India Conference (INDICON). :1–6.

Online Social Networks have emerged as an interesting area for analysis where each user having a personalized user profile interact and share information with each other. Apart from analyzing the structural characteristics, detection of abnormal and anomalous activities in social networks has become need of the hour. These anomalous activities represent the rare and mischievous activities that take place in the network. Graphical structure of social networks has encouraged the researchers to use various graph metrics to detect the anomalous activities. One such measure that seemed to be highly beneficial to detect the anomalies was brokerage value which helped to detect the anomalies with high accuracy. Also, further application of the measure to different datasets verified the fact that the anomalous behavior detected by the proposed measure was efficient as compared to the already proposed measures in Oddball Algorithm.