Biblio
The rapid growth of power Internet of Things devices has led to traditional data security sharing mechanisms that are no longer suitable for attribute and permission management of massive devices. In response to this problem, this article proposes a blockchain-based data security sharing mechanism for the power Internet of Things, which reduces the risk of data leakage through decentralization in the architecture and promotes the integration of multiple information and methods.
Human behaviors are often prohibited, or permitted by social norms. Therefore, if autonomous agents interact with humans, they also need to reason about various legal rules, social and ethical social norms, so they would be trusted and accepted by humans. Inverse Reinforcement Learning (IRL) can be used for the autonomous agents to learn social norm-compliant behavior via expert demonstrations. However, norms are context-sensitive, i.e. different norms get activated in different contexts. For example, the privacy norm is activated for a domestic robot entering a bathroom where a person may be present, whereas it is not activated for the robot entering the kitchen. Representing various contexts in the state space of the robot, as well as getting expert demonstrations under all possible tasks and contexts is extremely challenging. Inspired by recent work on Modularized Normative MDP (MNMDP) and early work on context-sensitive RL, we propose a new IRL framework, Context-Sensitive Norm IRL (CNIRL). CNIRL treats states and contexts separately, and assumes that the expert determines the priority of every possible norm in the environment, where each norm is associated with a distinct reward function. The agent chooses the action to maximize its cumulative rewards. We present the CNIRL model and show that its computational complexity is scalable in the number of norms. We also show via two experimental scenarios that CNIRL can handle problems with changing context spaces.
Nowadays, the emerging Internet-of-Things (IoT) emphasize the need for the security of network-connected devices. Additionally, there are two types of services in IoT devices that are easily exploited by attackers, weak authentication services (e.g., SSH/Telnet) and exploited services using command injection. Based on this observation, we propose IoTCMal, a hybrid IoT honeypot framework for capturing more comprehensive malicious samples aiming at IoT devices. The key novelty of IoTC-MAL is three-fold: (i) it provides a high-interactive component with common vulnerable service in real IoT device by utilizing traffic forwarding technique; (ii) it also contains a low-interactive component with Telnet/SSH service by running in virtual environment. (iii) Distinct from traditional low-interactive IoT honeypots[1], which only analyze family categories of malicious samples, IoTCMal primarily focuses on homology analysis of malicious samples. We deployed IoTCMal on 36 VPS1 instances distributed in 13 cities of 6 countries. By analyzing the malware binaries captured from IoTCMal, we discover 8 malware families controlled by at least 11 groups of attackers, which mainly launched DDoS attacks and digital currency mining. Among them, about 60% of the captured malicious samples ran in ARM or MIPs architectures, which are widely used in IoT devices.
We leverage deep learning algorithms on various user behavioral information gathered from end-user devices to classify a subject of interest. In spite of the ability of these techniques to counter spoofing threats, they are vulnerable to adversarial learning attacks, where an attacker adds adversarial noise to the input samples to fool the classifier into false acceptance. Recently, a handful of mature techniques like Fast Gradient Sign Method (FGSM) have been proposed to aid white-box attacks, where an attacker has a complete knowledge of the machine learning model. On the contrary, we exploit a black-box attack to a behavioral biometric system based on gait patterns, by using FGSM and training a shadow model that mimics the target system. The attacker has limited knowledge on the target model and no knowledge of the real user being authenticated, but induces a false acceptance in authentication. Our goal is to understand the feasibility of a black-box attack and to what extent FGSM on shadow models would contribute to its success. Our results manifest that the performance of FGSM highly depends on the quality of the shadow model, which is in turn impacted by key factors including the number of queries allowed by the target system in order to train the shadow model. Our experimentation results have revealed strong relationships between the shadow model and FGSM performance, as well as the effect of the number of FGSM iterations used to create an attack instance. These insights also shed light on deep-learning algorithms' model shareability that can be exploited to launch a successful attack.
In recent months, AI-synthesized face swapping videos referred to as deepfake have become an emerging problem. False video is becoming more and more difficult to distinguish, which brings a series of challenges to social security. Some scholars are devoted to studying how to improve the detection accuracy of deepfake video. At the same time, in order to conduct better research, some datasets for deepfake detection are made. Companies such as Google and Facebook have also spent huge sums of money to produce datasets for deepfake video detection, as well as holding deepfake detection competitions. The continuous advancement of video tampering technology and the improvement of video quality have also brought great challenges to deepfake detection. Some scholars have achieved certain results on existing datasets, while the results on some high-quality datasets are not as good as expected. In this paper, we propose new method with clustering-based embedding regularization for deepfake detection. We use open source algorithms to generate videos which can simulate distinctive artifacts in the deepfake videos. To improve the local smoothness of the representation space, we integrate a clustering-based embedding regularization term into the classification objective, so that the obtained model learns to resist adversarial examples. We evaluate our method on three latest deepfake datasets. Experimental results demonstrate the effectiveness of our method.
Nowadays, most vendors apply the same open source code to their products, which is dangerous. In addition, when manufacturers release patches, they generally hide the exact location of the vulnerabilities. So, identifying vulnerabilities in binaries is crucial. However, just searching source program has a lower identifying accuracy of vulnerability, which requires operators further to differentiate searched results. Under this context, we propose VMPBL to enhance identifying the accuracy of vulnerability with the help of patch files. VMPBL, compared with other proposed schemes, uses patched functions according to its vulnerable functions in patch file to further distinguish results. We establish a prototype of VMPBL, which can effectively identify vulnerable function types and get rid of safe functions from results. Firstly, we get the potential vulnerable-patched functions by binary comparison technique based on K-Trace algorithm. Then we combine the functions with vulnerability and patch knowledge database to classify these function pairs and identify the possible vulnerable functions and the vulnerability types. Finally, we test some programs containing real-world CWE vulnerabilities, and one of the experimental results about CWE415 shows that the results returned from only searching source program are about twice as much as the results from VMPBL. We can see that using VMPBL can significantly reduce the false positive rate of discovering vulnerabilities compared with analyzing source files alone.
As one of the most commonly used protocols in VPN technology, IPsec has many advantages. However, certain difficulties are posed to the audit work by the protection of in-formation. In this paper, we propose an audit method via man-in-the-middle mechanism, and design a prototype system with DPDK technology. Experiments are implemented in an IPv4 network environment, using default configuration of IPsec VPN configured with known PSK, on operating systems such as windows 7, windows 10, Android and iOS. Experimental results show that the prototype system can obtain the effect of content auditing well without affecting the normal communication between IPsec VPN users.
Trusted routing is a hot spot in network security. Lots of efforts have been made on trusted routing validation for Interior Gateway Protocols (IGP), e.g., using Public Key Infrastructure (PKI) to enhance the security of protocols, or routing monitoring systems. However, the former is limited by further deployment in the practical Internet, the latter depends on a complete, accurate, and fresh knowledge base-this is still a big challenge (Internet Service Providers (ISPs) are not willing to leak their routing policies). In this paper, inspired by the idea of centrally controlling in Software Defined Network (SDN), we propose a CENtrally Trusted Routing vAlidation framework, named CENTRA, which can automated collect routing information, centrally detect anomaly and deliver secure routing policy. We implement the proposed framework using NETCONF as the communication protocol and YANG as the data model. The experimental results reveal that CENTRA can detect and block anomalous routing in real time. Comparing to existing secure routing mechanism, CENTRA improves the detection efficiency and real-time significantly.
Personalized medicine performs diagnoses and treatments according to the DNA information of the patients. The new paradigm will change the health care model in the future. A doctor will perform the DNA sequence matching instead of the regular clinical laboratory tests to diagnose and medicate the diseases. Additionally, with the help of the affordable personal genomics services such as 23andMe, personalized medicine will be applied to a great population. Cloud computing will be the perfect computing model as the volume of the DNA data and the computation over it are often immense. However, due to the sensitivity, the DNA data should be encrypted before being outsourced into the cloud. In this paper, we start from a practical system model of the personalize medicine and present a solution for the secure DNA sequence matching problem in cloud computing. Comparing with the existing solutions, our scheme protects the DNA data privacy as well as the search pattern to provide a better privacy guarantee. We have proved that our scheme is secure under the well-defined cryptographic assumption, i.e., the sub-group decision assumption over a bilinear group. Unlike the existing interactive schemes, our scheme requires only one round of communication, which is critical in practical application scenarios. We also carry out a simulation study using the real-world DNA data to evaluate the performance of our scheme. The simulation results show that the computation overhead for real world problems is practical, and the communication cost is small. Furthermore, our scheme is not limited to the genome matching problem but it applies to general privacy preserving pattern matching problems which is widely used in real world.