Visible to the public Biblio

Filters: Keyword is Fitting  [Clear All Filters]
2023-09-20
Zhang, Chengzhao, Tang, Huiyue.  2022.  Empirical Research on Multifactor Quantitative Stock Selection Strategy Based on Machine Learning. 2022 3rd International Conference on Pattern Recognition and Machine Learning (PRML). :380—383.
In this paper, stock selection strategy design based on machine learning and multi-factor analysis is a research hotspot in quantitative investment field. Four machine learning algorithms including support vector machine, gradient lifting regression, random forest and linear regression are used to predict the rise and fall of stocks by taking stock fundamentals as input variables. The portfolio strategy is constructed on this basis. Finally, the stock selection strategy is further optimized. The empirical results show that the multifactor quantitative stock selection strategy has a good stock selection effect, and yield performance under the support vector machine algorithm is the best. With the increase of the number of factors, there is an inverse relationship between the fitting degree and the yield under various algorithms.
2023-07-21
Wenqi, Huang, Lingyu, Liang, Xin, Wang, Zhengguo, Ren, Shang, Cao, Xiaotao, Jiang.  2022.  An Early Warning Analysis Model of Metering Equipment Based on Federated Hybrid Expert System. 2022 15th International Symposium on Computational Intelligence and Design (ISCID). :217—220.
The smooth operation of metering equipment is inseparable from the monitoring and analysis of equipment alarm events by automated metering systems. With the generation of big data in power metering and the increasing demand for information security of metering systems in the power industry, how to use big data and protect data security at the same time has become a hot research field. In this paper, we propose a hybrid expert model based on federated learning to deal with the problem of alarm information analysis and identification. The hybrid expert system can divide the metering warning problem into multiple sub-problems for processing, which greatly improves the recognition and prediction accuracy. The experimental results show that our model has high accuracy in judging and identifying equipment faults.
2023-05-19
Wu, Jingyi, Guo, Jinkang, Lv, Zhihan.  2022.  Deep Learning Driven Security in Digital Twins of Drone Network. ICC 2022 - IEEE International Conference on Communications. :1—6.
This study aims to explore the security issues and computational intelligence of drone information system based on deep learning. Targeting at the security issues of the drone system when it is attacked, this study adopts the improved long short-term memory (LSTM) network to analyze the cyber physical system (CPS) data for prediction from the perspective of predicting the control signal data of the system before the attack occurs. At the same time, the differential privacy frequent subgraph (DPFS) is introduced to keep data privacy confidential, and the digital twins technology is used to map the operating environment of the drone in the physical space, and an attack prediction model for drone digital twins CPS is constructed based on differential privacy-improved LSTM. Finally, the tennessee eastman (TE) process is undertaken as a simulation platform to simulate the constructed model so as to verify its performance. In addition, the proposed model is compared with the Bidirectional LSTM (BiLSTM) and Attention-BiLSTM models proposed by other scholars. It was found that the root mean square error (RMSE) of the proposed model is the smallest (0.20) when the number of hidden layer nodes is 26. Comparison with the actual flow value shows that the proposed algorithm is more accurate with better fitting. Therefore, the constructed drone attack prediction model can achieve higher prediction accuracy and obvious better robustness under the premise of ensuring errors, which can provide experimental basis for the later security and intelligent development of drone system.
2023-05-11
Zhu, Lei, Huang, He, Gao, Song, Han, Jun, Cai, Chao.  2022.  False Data Injection Attack Detection Method Based on Residual Distribution of State Estimation. 2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). :724–728.
While acquiring precise and intelligent state sensing and control capabilities, the cyber physical power system is constantly exposed to the potential cyber-attack threat. False data injection (FDI) attack attempts to disrupt the normal operation of the power system through the coupling of cyber side and physical side. To deal with the situation that stealthy FDI attack can bypass the bad data detection and thus trigger false commands, a system feature extraction method in state estimation is proposed, and the corresponding FDI attack detection method is presented. Based on the principles of state estimation and stealthy FDI attack, we analyze the impacts of FDI attack on measurement residual. Gaussian fitting method is used to extract the characteristic parameters of residual distribution as the system feature, and attack detection is implemented in a sliding time window by comparison. Simulation results prove that the proposed attack detection method is effectiveness and efficiency.
ISSN: 2642-6633
2023-04-28
Liu, Cen, Luo, Laiwei, Wang, Jun, Zhang, Chao, Pan, Changyong.  2022.  A New Digital Predistortion Based On B spline Function With Compressive Sampling Pruning. 2022 International Wireless Communications and Mobile Computing (IWCMC). :1200–1205.
A power amplifier(PA) is inherently nonlinear device and is used in a communication system widely. Due to the nonlinearity of PA, the communication system is hard to work well. Digital predistortion (DPD) is the way to solve this problem. Using Volterra function to fit the PA is what most DPD solutions do. However, when it comes to wideband signal, there is a deduction on the performance of the Volterra function. In this paper, we replace the Volterra function with B-spline function which performs better on fitting PA at wideband signal. And the other benefit is that the orthogonality of coding matrix A could be improved, enhancing the stability of computation. Additionally, we use compressive sampling to reduce the complexity of the function model.
ISSN: 2376-6506
2022-09-20
Shaomei, Lv, Xiangyan, Zeng, Long, Huang, Lan, Wu, Wei, Jiang.  2021.  Passenger Volume Interval Prediction based on MTIGM (1,1) and BP Neural Network. 2021 33rd Chinese Control and Decision Conference (CCDC). :6013—6018.
The ternary interval number contains more comprehensive information than the exact number, and the prediction of the ternary interval number is more conducive to intelligent decision-making. In order to reduce the overfitting problem of the neural network model, a combination prediction method of the BP neural network and the matrix GM (1, 1) model for the ternary interval number sequence is proposed in the paper, and based on the proposed method to predict the passenger volume. The matrix grey model for the ternary interval number sequence (MTIGM (1, 1)) can stably predict the overall development trend of a time series. Considering the integrity of interval numbers, the BP neural network model is established by combining the lower, middle and upper boundary points of the ternary interval numbers. The combined weights of MTIGM (1, 1) and the BP neural network are determined based on the grey relational degree. The combined method is used to predict the total passenger volume and railway passenger volume of China, and the prediction effect is better than MTIGM (1, 1) and BP neural network.
2022-03-08
Diao, Weiping.  2021.  Network Security Situation Forecast Model Based on Neural Network Algorithm Development and Verification. 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). :462—465.

With the rapid development of Internet scale and technology, people pay more and more attention to network security. At present, the general method in the field of network security is to use NSS(Network Security Situation) to describe the security situation of the target network. Because NSSA (Network Security Situation Awareness) has not formed a unified optimal solution in architecture design and algorithm design, many ideas have been put forward continuously, and there is still a broad research space. In this paper, the improved LSTM(long short-term memory) neural network is used to analyze and process NSS data, and effectively utilize the attack logic contained in sequence data. Build NSSF (Network Security Situation Forecast) framework based on NAWL-ILSTM. The framework is to directly output the quantified NSS change curve after processing the input original security situation data. Modular design and dual discrimination engine reduce the complexity of implementation and improve the stability. Simulation results show that the prediction model not only improves the convergence speed of the prediction model, but also greatly reduces the prediction error of the model.

2021-10-12
Radhakrishnan, C., Karthick, K., Asokan, R..  2020.  Ensemble Learning Based Network Anomaly Detection Using Clustered Generalization of the Features. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). :157–162.
Due to the extraordinary volume of business information, classy cyber-attacks pointing the networks of all enterprise have become more casual, with intruders trying to pierce vast into and grasp broader from the compromised network machines. The vital security essential is that field experts and the network administrators have a common terminology to share the attempt of intruders to invoke the system and to rapidly assist each other retort to all kind of threats. Given the enormous huge system traffic, traditional Machine Learning (ML) algorithms will provide ineffective predictions of the network anomaly. Thereby, a hybridized multi-model system can improve the accuracy of detecting the intrusion in the networks. In this manner, this article presents a novel approach Clustered Generalization oriented Ensemble Learning Model (CGELM) for predicting the network anomaly. The performance metrics of the anticipated approach are Detection Rate (DR) and False Predictive Rate (FPR) for the two heterogeneous data sets namely NSL-KDD and UGR'16. The proposed method provides 98.93% accuracy for DR and 0.14% of FPR against Decision Stump AdaBoost and Stacking Ensemble methods.
2020-02-24
Song, Juncai, Zhao, Jiwen, Dong, Fei, Zhao, Jing, Xu, Liang, Wang, Lijun, Xie, Fang.  2019.  Demagnetization Modeling Research for Permanent Magnet in PMSLM Using Extreme Learning Machine. 2019 IEEE International Electric Machines Drives Conference (IEMDC). :1757–1761.
This paper investigates the temperature demagnetization modeling method for permanent magnets (PM) in permanent magnet synchronous linear motor (PMSLM). First, the PM characteristics are presented, and finite element analysis (FEA) is conducted to show the magnetic distribution under different temperatures. Second, demagnetization degrees and remanence of the five PMs' experiment sample are actually measured in stove at temperatures varying from room temperature to 300 °C, and to obtain the real data for next-step modeling. Third, machine learning algorithm called extreme learning machine (ELM) is introduced to map the nonlinear relationships between temperature and demagnetization characteristics of PM and build the demagnetization models. Finally, comparison experiments between linear modeling method, polynomial modeling method, and ELM can certify the effectiveness and advancement of this proposed method.
2019-01-16
Nachtigall, Troy Robert, Andersen, Kristina.  2018.  Making Secret Pockets. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems. :LBW574:1–LBW574:6.
This paper describes an early design research exploration into the potential of folds and pockets to serve as places for safekeeping and secrecy in wearables. We explore what such secrecy may mean through woven data codes. We report on early material exploration, a pilot study with ten participants, and the personalization of a data object. We then outline, how we will make use of these early indications to build future stages of the project.
2017-03-08
Kaur, R., Singh, S..  2015.  Detecting anomalies in Online Social Networks using graph metrics. 2015 Annual IEEE India Conference (INDICON). :1–6.

Online Social Networks have emerged as an interesting area for analysis where each user having a personalized user profile interact and share information with each other. Apart from analyzing the structural characteristics, detection of abnormal and anomalous activities in social networks has become need of the hour. These anomalous activities represent the rare and mischievous activities that take place in the network. Graphical structure of social networks has encouraged the researchers to use various graph metrics to detect the anomalous activities. One such measure that seemed to be highly beneficial to detect the anomalies was brokerage value which helped to detect the anomalies with high accuracy. Also, further application of the measure to different datasets verified the fact that the anomalous behavior detected by the proposed measure was efficient as compared to the already proposed measures in Oddball Algorithm.