Visible to the public Biblio

Filters: Keyword is unmanned aerial vehicle  [Clear All Filters]
2023-09-01
Lan, James Kin Wah, Lee, Frankie Kin Wah.  2022.  Drone Forensics: A Case Study on DJI Mavic Air 2. 2022 24th International Conference on Advanced Communication Technology (ICACT). :291—296.
With the inundation of more cost effective and improved flight performance Unmanned Aerial Vehicles (UAVs) into the consumer market, we have seen more uses of these for both leisure and business purposes. As such, demand for digital forensic examination on these devices has seen an increase as well. This research will explore and discuss the forensic examination process on one of the more popular brands of UAV in Singapore, namely DJI. The findings are from the examination of the exposed File Transfer Protocol (FTP) channel and the extraction of the Data-at-Rest on the memory chip of the drone. The extraction was done using the Chip-Off and Chip-On technique.
2023-05-19
Wu, Jingyi, Guo, Jinkang, Lv, Zhihan.  2022.  Deep Learning Driven Security in Digital Twins of Drone Network. ICC 2022 - IEEE International Conference on Communications. :1—6.
This study aims to explore the security issues and computational intelligence of drone information system based on deep learning. Targeting at the security issues of the drone system when it is attacked, this study adopts the improved long short-term memory (LSTM) network to analyze the cyber physical system (CPS) data for prediction from the perspective of predicting the control signal data of the system before the attack occurs. At the same time, the differential privacy frequent subgraph (DPFS) is introduced to keep data privacy confidential, and the digital twins technology is used to map the operating environment of the drone in the physical space, and an attack prediction model for drone digital twins CPS is constructed based on differential privacy-improved LSTM. Finally, the tennessee eastman (TE) process is undertaken as a simulation platform to simulate the constructed model so as to verify its performance. In addition, the proposed model is compared with the Bidirectional LSTM (BiLSTM) and Attention-BiLSTM models proposed by other scholars. It was found that the root mean square error (RMSE) of the proposed model is the smallest (0.20) when the number of hidden layer nodes is 26. Comparison with the actual flow value shows that the proposed algorithm is more accurate with better fitting. Therefore, the constructed drone attack prediction model can achieve higher prediction accuracy and obvious better robustness under the premise of ensuring errors, which can provide experimental basis for the later security and intelligent development of drone system.
2022-07-29
Iqbal, Shahrear.  2021.  A Study on UAV Operating System Security and Future Research Challenges. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0759—0765.
The popularity of Unmanned Aerial Vehicles (UAV) or more commonly known as Drones is increasing recently. UAVs have tremendous potential in various industries, e.g., military, agriculture, transportation, movie, supply chain, and surveillance. UAVs are also popular among hobbyists for photography, racing, etc. Despite the possibilities, many UAV related security incidents are reported nowadays. UAVs can be targeted by malicious parties and if compromised, life-threatening activities can be performed using them. As a result, governments around the world have started to regulate the use of UAVs. We believe that UAVs need an intelligent and automated defense mechanism to ensure the safety of humans, properties, and the UAVs themselves. A major component where we can incorporate the defense mechanism is the operating system. In this paper, we investigate the security of existing operating systems used in consumer and commercial UAVs. We then survey various security issues of UAV operating systems and possible solutions. Finally, we discuss several research challenges for developing a secure operating system for UAVs.
2022-07-01
He, Xufeng, Li, Xi, Ji, Hong, Zhang, Heli.  2021.  Resource Allocation for Secrecy Rate Optimization in UAV-assisted Cognitive Radio Network. 2021 IEEE Wireless Communications and Networking Conference (WCNC). :1—6.
Cognitive radio (CR) as a key technology of solving the problem of low spectrum utilization has attracted wide attention in recent years. However, due to the open nature of the radio, the communication links can be eavesdropped by illegal user, resulting to severe security threat. Unmanned aerial vehicle (UAV) equipped with signal sensing and data transmission module, can access to the unoccupied channel to improve network security performance by transmitting artificial noise (AN) in CR networks. In this paper, we propose a resource allocation scheme for UAV-assisted overlay CR network. Based on the result of spectrum sensing, the UAV decides to play the role of jammer or secondary transmitter. The power splitting ratio for transmitting secondary signal and AN is introduced to allocate the UAV's transmission power. Particularly, we jointly optimize the spectrum sensing time, the power splitting ratio and the hovering position of the UAV to maximize the total secrecy rate of primary and secondary users. The optimization problem is highly intractable, and we adopt an adaptive inertia coefficient particle swarm optimization (A-PSO) algorithm to solve this problem. Simulation results show that the proposed scheme can significantly improve the total secrecy rate in CR network.
Shengnan, Cao, Xiangdong, Jia, Yixuan, Guo, Yuhua, Zhao.  2021.  Physical Layer Security Communication of Cognitive UAV Mobile Relay Network. 2021 7th International Symposium on Mechatronics and Industrial Informatics (ISMII). :267—271.
We consider that in order to improve the utilization rate of spectrum resources and the security rate of unmanned aerial vehicle (UAV) Communication system, a secure transmission scheme of UAV relay assisted cognitive radio network (CRN) is proposed. In the presence of primary users and eavesdroppers, the UAV acts as the decoding and forwarding mobile relay to assist the secure transmission from the source node to the legitimate destination node. This paper optimizes the flight trajectory and transmission power of the UAV relay to maximize the security rate. Since the design problem is nonconvex, the original problem is approximated to a convex constraint by constructing a surrogate function with nonconvex constraints, and an iterative algorithm based on continuous convex approximation is used to solve the problem. The simulation results show that the algorithm can effectively improve the average security rate of the secondary system and successfully optimize the UAV trajectory.
2017-03-08
Liu, H., Wang, W., He, Z., Tong, Q., Wang, X., Yu, W., Lv, M..  2015.  Blind image quality evaluation metrics design for UAV photographic application. 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). :293–297.

A number of blind Image Quality Evaluation Metrics (IQEMs) for Unmanned Aerial Vehicle (UAV) photograph application are presented. Nowadays, the visible light camera is widely used for UAV photograph application because of its vivid imaging effect; however, the outdoor environment light will produce great negative influences on its imaging output unfortunately. In this paper, to conquer this problem above, we design and reuse a series of blind IQEMs to analyze the imaging quality of UAV application. The Human Visual System (HVS) based IQEMs, including the image brightness level, the image contrast level, the image noise level, the image edge blur level, the image texture intensity level, the image jitter level, and the image flicker level, are all considered in our application. Once these IQEMs are calculated, they can be utilized to provide a computational reference for the following image processing application, such as image understanding and recognition. Some preliminary experiments for image enhancement have proved the correctness and validity of our proposed technique.