Visible to the public Biblio

Filters: Author is Li, Xi  [Clear All Filters]
2022-07-01
He, Xufeng, Li, Xi, Ji, Hong, Zhang, Heli.  2021.  Resource Allocation for Secrecy Rate Optimization in UAV-assisted Cognitive Radio Network. 2021 IEEE Wireless Communications and Networking Conference (WCNC). :1—6.
Cognitive radio (CR) as a key technology of solving the problem of low spectrum utilization has attracted wide attention in recent years. However, due to the open nature of the radio, the communication links can be eavesdropped by illegal user, resulting to severe security threat. Unmanned aerial vehicle (UAV) equipped with signal sensing and data transmission module, can access to the unoccupied channel to improve network security performance by transmitting artificial noise (AN) in CR networks. In this paper, we propose a resource allocation scheme for UAV-assisted overlay CR network. Based on the result of spectrum sensing, the UAV decides to play the role of jammer or secondary transmitter. The power splitting ratio for transmitting secondary signal and AN is introduced to allocate the UAV's transmission power. Particularly, we jointly optimize the spectrum sensing time, the power splitting ratio and the hovering position of the UAV to maximize the total secrecy rate of primary and secondary users. The optimization problem is highly intractable, and we adopt an adaptive inertia coefficient particle swarm optimization (A-PSO) algorithm to solve this problem. Simulation results show that the proposed scheme can significantly improve the total secrecy rate in CR network.
2020-10-16
Tian, Zheng, Wu, Weidong, Li, Shu, Li, Xi, Sun, Yizhen, Chen, Zhongwei.  2019.  Industrial Control Intrusion Detection Model Based on S7 Protocol. 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2). :2647—2652.

With the proposal of the national industrial 4.0 strategy, the integration of industrial control network and Internet technology is getting higher and higher. At the same time, the closeness of industrial control networks has been broken to a certain extent, making the problem of industrial control network security increasingly serious. S7 protocol is a private protocol of Siemens Company in Germany, which is widely used in the communication process of industrial control network. In this paper, an industrial control intrusion detection model based on S7 protocol is proposed. Traditional protocol parsing technology cannot resolve private industrial control protocols, so, this model uses deep analysis algorithm to realize the analysis of S7 data packets. At the same time, in order to overcome the complexity and portability of static white list configuration, this model dynamically builds a white list through white list self-learning algorithm. Finally, a composite intrusion detection method combining white list detection and abnormal behavior detection is used to detect anomalies. The experiment proves that the method can effectively detect the abnormal S7 protocol packet in the industrial control network.

2020-01-21
Li, Shu, Tian, Jianwei, Zhu, Hongyu, Tian, Zheng, Qiao, Hong, Li, Xi, Liu, Jie.  2019.  Research in Fast Modular Exponentiation Algorithm Based on FPGA. 2019 11th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :79–82.
Modular exponentiation of large number is widely applied in public-key cryptosystem, also the bottleneck in the computation of public-key algorithm. Modular multiplication is the key calculation in modular exponentiation. An improved Montgomery algorithm is utilized to achieve modular multiplication and converted into systolic array to increase the running frequency. A high efficiency fast modular exponentiation structure is developed to bring the best out of the modular multiplication module and enhance the ability of defending timing attacks and power attacks. For 1024-bit key operands, the design can be run at 170MHz and finish a modular exponentiation in 4,402,374 clock cycles.