Visible to the public Biblio

Filters: Keyword is knowledge transfer  [Clear All Filters]
2022-07-01
Boloka, Tlou, Makondo, Ndivhuwo, Rosman, Benjamin.  2021.  Knowledge Transfer using Model-Based Deep Reinforcement Learning. 2021 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA). :1—6.
Deep reinforcement learning has recently been adopted for robot behavior learning, where robot skills are acquired and adapted from data generated by the robot while interacting with its environment through a trial-and-error process. Despite this success, most model-free deep reinforcement learning algorithms learn a task-specific policy from a clean slate and thus suffer from high sample complexity (i.e., they require a significant amount of interaction with the environment to learn reasonable policies and even more to reach convergence). They also suffer from poor initial performance due to executing a randomly initialized policy in the early stages of learning to obtain experience used to train a policy or value function. Model based deep reinforcement learning mitigates these shortcomings. However, it suffers from poor asymptotic performance in contrast to a model-free approach. In this work, we investigate knowledge transfer from a model-based teacher to a task-specific model-free learner to alleviate executing a randomly initialized policy in the early stages of learning. Our experiments show that this approach results in better asymptotic performance, enhanced initial performance, improved safety, better action effectiveness, and reduced sample complexity.
2021-02-22
Martinelli, F., Marulli, F., Mercaldo, F., Marrone, S., Santone, A..  2020.  Enhanced Privacy and Data Protection using Natural Language Processing and Artificial Intelligence. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.

Artificial Intelligence systems have enabled significant benefits for users and society, but whilst the data for their feeding are always increasing, a side to privacy and security leaks is offered. The severe vulnerabilities to the right to privacy obliged governments to enact specific regulations to ensure privacy preservation in any kind of transaction involving sensitive information. In the case of digital and/or physical documents comprising sensitive information, the right to privacy can be preserved by data obfuscation procedures. The capability of recognizing sensitive information for obfuscation is typically entrusted to the experience of human experts, who are over-whelmed by the ever increasing amount of documents to process. Artificial intelligence could proficiently mitigate the effort of the human officers and speed up processes. Anyway, until enough knowledge won't be available in a machine readable format, automatic and effectively working systems can't be developed. In this work we propose a methodology for transferring and leveraging general knowledge across specific-domain tasks. We built, from scratch, specific-domain knowledge data sets, for training artificial intelligence models supporting human experts in privacy preserving tasks. We exploited a mixture of natural language processing techniques applied to unlabeled domain-specific documents corpora for automatically obtain labeled documents, where sensitive information are recognized and tagged. We performed preliminary tests just over 10.000 documents from the healthcare and justice domains. Human experts supported us during the validation. Results we obtained, estimated in terms of precision, recall and F1-score metrics across these two domains, were promising and encouraged us to further investigations.

2021-01-15
Ebrahimi, M., Samtani, S., Chai, Y., Chen, H..  2020.  Detecting Cyber Threats in Non-English Hacker Forums: An Adversarial Cross-Lingual Knowledge Transfer Approach. 2020 IEEE Security and Privacy Workshops (SPW). :20—26.

The regularity of devastating cyber-attacks has made cybersecurity a grand societal challenge. Many cybersecurity professionals are closely examining the international Dark Web to proactively pinpoint potential cyber threats. Despite its potential, the Dark Web contains hundreds of thousands of non-English posts. While machine translation is the prevailing approach to process non-English text, applying MT on hacker forum text results in mistranslations. In this study, we draw upon Long-Short Term Memory (LSTM), Cross-Lingual Knowledge Transfer (CLKT), and Generative Adversarial Networks (GANs) principles to design a novel Adversarial CLKT (A-CLKT) approach. A-CLKT operates on untranslated text to retain the original semantics of the language and leverages the collective knowledge about cyber threats across languages to create a language invariant representation without any manual feature engineering or external resources. Three experiments demonstrate how A-CLKT outperforms state-of-the-art machine learning, deep learning, and CLKT algorithms in identifying cyber-threats in French and Russian forums.

2019-06-10
Luo, Chen, Chen, Zhengzhang, Tang, Lu-An, Shrivastava, Anshumali, Li, Zhichun, Chen, Haifeng, Ye, Jieping.  2018.  TINET: Learning Invariant Networks via Knowledge Transfer. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. :1890-1899.

The latent behavior of an information system that can exhibit extreme events, such as system faults or cyber-attacks, is complex. Recently, the invariant network has shown to be a powerful way of characterizing complex system behaviors. Structures and evolutions of the invariance network, in particular, the vanishing correlations, can shed light on identifying causal anomalies and performing system diagnosis. However, due to the dynamic and complex nature of real-world information systems, learning a reliable invariant network in a new environment often requires continuous collecting and analyzing the system surveillance data for several weeks or even months. Although the invariant networks learned from old environments have some common entities and entity relationships, these networks cannot be directly borrowed for the new environment due to the domain variety problem. To avoid the prohibitive time and resource consuming network building process, we propose TINET, a knowledge transfer based model for accelerating invariant network construction. In particular, we first propose an entity estimation model to estimate the probability of each source domain entity that can be included in the final invariant network of the target domain. Then, we propose a dependency construction model for constructing the unbiased dependency relationships by solving a two-constraint optimization problem. Extensive experiments on both synthetic and real-world datasets demonstrate the effectiveness and efficiency of TINET. We also apply TINET to a real enterprise security system for intrusion detection. TINET achieves superior detection performance at least 20 days lead-lag time in advance with more than 75% accuracy.

2018-03-19
Both, Fabian, Thoma, Steffen, Rettinger, Achim.  2017.  Cross-Modal Knowledge Transfer: Improving the Word Embedding of Apple by Looking at Oranges. Proceedings of the Knowledge Capture Conference. :18:1–18:8.

Capturing knowledge via learned latent vector representations of words, images and knowledge graph (KG) entities has shown state-of-the-art performance in computer vision, computational linguistics and KG tasks. Recent results demonstrate that the learning of such representations across modalities can be beneficial, since each modality captures complementary information. However, those approaches are limited to concepts with cross-modal alignments in the training data which are only available for just a few concepts. Especially for visual objects exist far fewer embeddings than for words or KG entities. We investigate whether a word embedding (e.g., for "apple") can still capture information from other modalities even if there is no matching concept within the other modalities (i.e., no images or KG entities of apples but of oranges as pictured in the title analogy). The empirical results of our knowledge transfer approach demonstrate that word embeddings do benefit from extrapolating information across modalities even for concepts that are not represented in the other modalities. Interestingly, this applies most to concrete concepts (e.g., dragonfly) while abstract concepts (e.g., animal) benefit most if aligned concepts are available in the other modalities.