Visible to the public Biblio

Filters: Keyword is Skeleton  [Clear All Filters]
2022-08-03
Deng, Yuxin, Chen, Zezhong, Du, Wenjie, Mao, Bifei, Liang, Zhizhang, Lin, Qiushi, Li, Jinghui.  2021.  Trustworthiness Derivation Tree: A Model of Evidence-Based Software Trustworthiness. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :487—493.
In order to analyze the trustworthiness of complex software systems, we propose a model of evidence-based software trustworthiness called trustworthiness derivation tree (TDT). The basic idea of constructing a TDT is to refine main properties into key ingredients and continue the refinement until basic facts such as evidences are reached. The skeleton of a TDT can be specified by a set of rules, which is convenient for automated reasoning in Prolog. We develop a visualization tool that can construct the skeleton of a TDT by taking the rules as input, and allow a user to edit the TDT in a graphical user interface. In a software development life cycle, TDTs can serve as a communication means for different stakeholders to agree on the properties about a system in the requirement analysis phase, and they can be used for deductive reasoning so as to verify whether the system achieves trustworthiness in the product validation phase. We have piloted the approach of using TDTs in more than a dozen real scenarios of software development. Indeed, using TDTs helped us to discover and then resolve some subtle problems.
2021-12-20
Janapriya, N., Anuradha, K., Srilakshmi, V..  2021.  Adversarial Deep Learning Models With Multiple Adversaries. 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). :522–525.
Adversarial machine learning calculations handle adversarial instance age, producing bogus data information with the ability to fool any machine learning model. As the word implies, “foe” refers to a rival, whereas “rival” refers to a foe. In order to strengthen the machine learning models, this section discusses about the weakness of machine learning models and how effectively the misinterpretation occurs during the learning cycle. As definite as it is, existing methods such as creating adversarial models and devising powerful ML computations, frequently ignore semantics and the general skeleton including ML section. This research work develops an adversarial learning calculation by considering the coordinated portrayal by considering all the characteristics and Convolutional Neural Networks (CNN) explicitly. Figuring will most likely express minimal adjustments via data transport represented over positive and negative class markings, as well as a specific subsequent data flow misclassified by CNN. The final results recommend a certain game theory and formative figuring, which obtain incredible favored ensuring about significant learning models against the execution of shortcomings, which are reproduced as attack circumstances against various adversaries.
2021-10-12
Hassan, Wajih Ul, Bates, Adam, Marino, Daniel.  2020.  Tactical Provenance Analysis for Endpoint Detection and Response Systems. 2020 IEEE Symposium on Security and Privacy (SP). :1172–1189.
Endpoint Detection and Response (EDR) tools provide visibility into sophisticated intrusions by matching system events against known adversarial behaviors. However, current solutions suffer from three challenges: 1) EDR tools generate a high volume of false alarms, creating backlogs of investigation tasks for analysts; 2) determining the veracity of these threat alerts requires tedious manual labor due to the overwhelming amount of low-level system logs, creating a "needle-in-a-haystack" problem; and 3) due to the tremendous resource burden of log retention, in practice the system logs describing long-lived attack campaigns are often deleted before an investigation is ever initiated.This paper describes an effort to bring the benefits of data provenance to commercial EDR tools. We introduce the notion of Tactical Provenance Graphs (TPGs) that, rather than encoding low-level system event dependencies, reason about causal dependencies between EDR-generated threat alerts. TPGs provide compact visualization of multi-stage attacks to analysts, accelerating investigation. To address EDR's false alarm problem, we introduce a threat scoring methodology that assesses risk based on the temporal ordering between individual threat alerts present in the TPG. In contrast to the retention of unwieldy system logs, we maintain a minimally-sufficient skeleton graph that can provide linkability between existing and future threat alerts. We evaluate our system, RapSheet, using the Symantec EDR tool in an enterprise environment. Results show that our approach can rank truly malicious TPGs higher than false alarm TPGs. Moreover, our skeleton graph reduces the long-term burden of log retention by up to 87%.
2020-03-30
Miao, Hui, Deshpande, Amol.  2019.  Understanding Data Science Lifecycle Provenance via Graph Segmentation and Summarization. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :1710–1713.
Increasingly modern data science platforms today have non-intrusive and extensible provenance ingestion mechanisms to collect rich provenance and context information, handle modifications to the same file using distinguishable versions, and use graph data models (e.g., property graphs) and query languages (e.g., Cypher) to represent and manipulate the stored provenance/context information. Due to the schema-later nature of the metadata, multiple versions of the same files, and unfamiliar artifacts introduced by team members, the resulting "provenance graphs" are quite verbose and evolving; further, it is very difficult for the users to compose queries and utilize this valuable information just using standard graph query model. In this paper, we propose two high-level graph query operators to address the verboseness and evolving nature of such provenance graphs. First, we introduce a graph segmentation operator, which queries the retrospective provenance between a set of source vertices and a set of destination vertices via flexible boundary criteria to help users get insight about the derivation relationships among those vertices. We show the semantics of such a query in terms of a context-free grammar, and develop efficient algorithms that run orders of magnitude faster than state-of-the-art. Second, we propose a graph summarization operator that combines similar segments together to query prospective provenance of the underlying project. The operator allows tuning the summary by ignoring vertex details and characterizing local structures, and ensures the provenance meaning using path constraints. We show the optimal summary problem is PSPACE-complete and develop effective approximation algorithms. We implement the operators on top of Neo4j, evaluate our query techniques extensively, and show the effectiveness and efficiency of the proposed methods.
2018-11-14
Wu, Q., Zhao, W..  2018.  Machine Learning Based Human Activity Detection in a Privacy-Aware Compliance Tracking System. 2018 IEEE International Conference on Electro/Information Technology (EIT). :0673–0676.

In this paper, we report our work on using machine learning techniques to predict back bending activity based on field data acquired in a local nursing home. The data are recorded by a privacy-aware compliance tracking system (PACTS). The objective of PACTS is to detect back-bending activities and issue real-time alerts to the participant when she bends her back excessively, which we hope could help the participant form good habits of using proper body mechanics when performing lifting/pulling tasks. We show that our algorithms can differentiate nursing staffs baseline and high-level bending activities by using human skeleton data without any expert rules.

2017-04-20
Sonewar, P. A., Thosar, S. D..  2016.  Detection of SQL injection and XSS attacks in three tier web applications. 2016 International Conference on Computing Communication Control and automation (ICCUBEA). :1–4.

Web applications are used on a large scale worldwide, which handles sensitive personal data of users. With web application that maintains data ranging from as simple as telephone number to as important as bank account information, security is a prime point of concern. With hackers aimed to breakthrough this security using various attacks, we are focusing on SQL injection attacks and XSS attacks. SQL injection attack is very common attack that manipulates the data passing through web application to the database servers through web servers in such a way that it alters or reveals database contents. While Cross Site Scripting (XSS) attacks focuses more on view of the web application and tries to trick users that leads to security breach. We are considering three tier web applications with static and dynamic behavior, for security. Static and dynamic mapping model is created to detect anomalies in the class of SQL Injection and XSS attacks.

2017-03-08
Xu, W., Cheung, S. c S., Soares, N..  2015.  Affect-preserving privacy protection of video. 2015 IEEE International Conference on Image Processing (ICIP). :158–162.

The prevalence of wireless networks and the convenience of mobile cameras enable many new video applications other than security and entertainment. From behavioral diagnosis to wellness monitoring, cameras are increasing used for observations in various educational and medical settings. Videos collected for such applications are considered protected health information under privacy laws in many countries. At the same time, there is an increasing need to share such video data across a wide spectrum of stakeholders including professionals, therapists and families facing similar challenges. Visual privacy protection techniques, such as blurring or object removal, can be used to mitigate privacy concern, but they also obliterate important visual cues of affect and social behaviors that are crucial for the target applications. In this paper, we propose a method of manipulating facial expression and body shape to conceal the identity of individuals while preserving the underlying affect states. The experiment results demonstrate the effectiveness of our method.

Kesiman, M. W. A., Prum, S., Sunarya, I. M. G., Burie, J. C., Ogier, J. M..  2015.  An analysis of ground truth binarized image variability of palm leaf manuscripts. 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA). :229–233.

As a very valuable cultural heritage, palm leaf manuscripts offer a new challenge in document analysis system due to the specific characteristics on physical support of the manuscript. With the aim of finding an optimal binarization method for palm leaf manuscript images, creating a new ground truth binarized image is a necessary step in document analysis of palm leaf manuscript. But, regarding to the human intervention in ground truthing process, an important remark about the subjectivity effect on the construction of ground truth binarized image has been analysed and reported. In this paper, we present an experiment in a real condition to analyse the existance of human subjectivity on the construction of ground truth binarized image of palm leaf manuscript images and to measure quantitatively the ground truth variability with several binarization evaluation metrics.