Biblio
The current study explored the influence of trust and distrust behaviors on performance, process, and purpose (trustworthiness) perceptions over time when participants were paired with a robot partner. We examined the changes in trustworthiness perceptions after trust violations and trust repair after those violations. Results indicated performance, process, and purpose perceptions were all affected by trust violations, but perceptions of process and purpose decreased more than performance following a distrust behavior. Similarly, trust repair was achieved in performance perceptions, but trust repair in perceived process and purpose was absent. When a trust violation occurred, process and purpose perceptions deteriorated and failed to recover from the violation. In addition, the trust violation resulted in untrustworthy perceptions of the robot. In contrast, trust violations decreased partner performance perceptions, and subsequent trust behaviors resulted in a trust repair. These findings suggest that people are more sensitive to distrust behaviors in their perceptions of process and purpose than they are in performance perceptions.
In painting, humans can draw an interrelation between the style and the content of a given image in order to enhance visual experiences. Deep neural networks like convolutional neural networks are being used to draw a satisfying conclusion of this problem of neural style transfer due to their exceptional results in the key areas of visual perceptions such as object detection and face recognition.In this study, along with style transfer on whole image it is also outlined how transfer of style can be performed only on the specific parts of the content image which is accomplished by using masks. The style is transferred in a way that there is a least amount of loss to the content image i.e., semantics of the image is preserved.
The recent success of brain-inspired deep neural networks (DNNs) in solving complex, high-level visual tasks has led to rising expectations for their potential to match the human visual system. However, DNNs exhibit idiosyncrasies that suggest their visual representation and processing might be substantially different from human vision. One limitation of DNNs is that they are vulnerable to adversarial examples, input images on which subtle, carefully designed noises are added to fool a machine classifier. The robustness of the human visual system against adversarial examples is potentially of great importance as it could uncover a key mechanistic feature that machine vision is yet to incorporate. In this study, we compare the visual representations of white- and black-box adversarial examples in DNNs and humans by leveraging functional magnetic resonance imaging (fMRI). We find a small but significant difference in representation patterns for different (i.e. white- versus black-box) types of adversarial examples for both humans and DNNs. However, human performance on categorical judgment is not degraded by noise regardless of the type unlike DNN. These results suggest that adversarial examples may be differentially represented in the human visual system, but unable to affect the perceptual experience.
Most Depth Image Based Rendering (DIBR) techniques produce synthesized images which contain non-uniform geometric distortions affecting edges coherency. This type of distortions are challenging for common image quality metrics. Morphological filters maintain important geometric information such as edges across different resolution levels. There is inherent congruence between the morphological pyramid decomposition scheme and human visual perception. In this paper, multi-scale measure, morphological pyramid peak signal-to-noise ratio MP-PSNR, based on morphological pyramid decomposition is proposed for the evaluation of DIBR synthesized images. It is shown that MPPSNR achieves much higher correlation with human judgment compared to the state-of-the-art image quality measures in this context.