Biblio
The k-anonymity approach adopted by k-Same face de-identification methods enables these methods to serve their purpose of privacy protection. However, it also forces every k original faces to share the same de-identified face, making it impossible to track individuals in a k-Same de-identified video. To address this issue, this paper presents an approach to the creation of distinguishable de-identified faces. This new approach can serve privacy protection perfectly whilst producing de-identified faces that are as distinguishable as their original faces.
Automated human facial image de-identification is a much needed technology for privacy-preserving social media and intelligent surveillance applications. Other than the usual face blurring techniques, in this work, we propose to achieve facial anonymity by slightly modifying existing facial images into "averaged faces" so that the corresponding identities are difficult to uncover. This approach preserves the aesthesis of the facial images while achieving the goal of privacy protection. In particular, we explore a deep learning-based facial identity-preserving (FIP) features. Unlike conventional face descriptors, the FIP features can significantly reduce intra-identity variances, while maintaining inter-identity distinctions. By suppressing and tinkering FIP features, we achieve the goal of k-anonymity facial image de-identification while preserving desired utilities. Using a face database, we successfully demonstrate that the resulting "averaged faces" will still preserve the aesthesis of the original images while defying facial image identity recognition.