Biblio
Cloud federations allow Cloud Service Providers (CSPs) to deliver more efficient service performance by interconnecting their Cloud environments and sharing their resources. However, the security of the federated Cloud service could be compromised if the resources are shared with relatively insecure and unreliable CSPs. In this paper, we propose a Cloud federation formation model that considers the security risk levels of CSPs. We start by quantifying the security risk of CSPs according to well defined evaluation criteria related to security risk avoidance and mitigation, then we model the Cloud federation formation process as a hedonic coalitional game with a preference relation that is based on the security risk levels and reputations of CSPs. We propose a federation formation algorithm that enables CSPs to cooperate while considering the security risk introduced to their infrastructures, and refrain from cooperating with undesirable CSPs. According to the stability-based solution concepts that we use to evaluate the game, the model shows that CSPs will be able to form acceptable federations on the fly to service incoming resource provisioning requests whenever required.
End-hopping is an effective component of Moving Target Defense (MTD) by randomly hopping network configuration of host, which is a game changing technique against cyber-attack and can interrupt cyber kill chain in the early stage. In this paper, a novel end-hopping model, Multi End-hopping (MEH), is proposed to exploit the full potentials of MTD techniques by hosts cooperating with others to share possible configurable space (PCS). And an optimization method based on cooperative game is presented to make hosts form optimal alliances against reconnaissance, scanning and blind probing DoS attack. Those model and method confuse adversaries by establishing alliances of hosts to enlarge their PCS, which thwarts various malicious scanning and mitigates probing DoS attack intensity. Through simulations, we validate the correctness of MEH model and the effectiveness of optimization method. Experiment results show that the proposed model and method increase system stable operational probability while introduces a low overhead in optimization.
The stability and effectiveness of supply chain financing union are directly affected by income fluctuation and unequal distribution problems, subsequently making the economic interests of the involved parties impacted. In this paper, the incomes of the parties in the union were distributed using Shapley value from the perspective of cooperative game under the background of the supply chain financing based on third-party trading platform, and then correction factors were weighted by introducing risk correction factors and combining with analytic hierarchy process (AHP), in order to improve the original model. Finally, the feasibility of the scheme was proved using example.