Biblio
The use of Knuth's Rule and Bayesian Blocks constant piecewise models for characterization of RFID traffic has been proposed already. This study presents an evaluation of the application of those two modeling techniques for various RFID traffic patterns. The data sets used in this study consist of time series of binned RFID command counts. More specifically., we compare the shape of several empirical plots of raw data sets we obtained from experimental RIFD readings., against the constant piecewise graphs produced as an output of the two modeling algorithms. One issue limiting the applicability of modeling techniques to RFID traffic is the fact that there are a large number of various RFID applications available. We consider this phenomenon to present the main motivation for this study. The general expectation is that the RFID traffic traces from different applications would be sequences with different histogram shapes. Therefore., no modeling technique could be considered universal for modeling the traffic from multiple RFID applications., without first evaluating its model performance for various traffic patterns. We postulate that differences in traffic patterns are present if the histograms of two different sets of RFID traces form visually different plot shapes.
In recent years, the issues of RFID security and privacy are a concern. To prevent the tag is cloned, physically unclonable function (PUF) has been proposed. In each PUF-enabled tag, the responses of PUF depend on the structural disorder that cannot be cloned or reproduced. Therefore, many responses need to store in the database in the initial phase of many authentication protocols. In the supply chain, the owners of the PUF-enabled Tags change frequently, many authentication and delegation protocols are proposed. In this paper, a new lightweight authentication and delegation protocol for RFID tags (LADP) is proposed. The new protocol does not require pre-stored many PUF's responses in the database. When the authentication messages are exchanged, the next response of PUF is passed to the reader secretly. In the transfer process of ownership, the new owner will not get the information of the interaction of the original owner. It can protect the privacy of the original owner. Meanwhile, the original owner cannot continue to access or track the tag. It can protect the privacy of the new owner. In terms of efficiency, the new protocol replaces the pseudorandom number generator with the randomness of PUF that suitable for use in the low-cost tags. The cost of computation and communication are reduced and superior to other protocols.